IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8202.html
   My bibliography  Save this article

Single-molecule imaging of a three-component ordered actin disassembly mechanism

Author

Listed:
  • Silvia Jansen

    (Rosenstiel Basic Medical Science Research Center, Brandeis University)

  • Agnieszka Collins

    (Rosenstiel Basic Medical Science Research Center, Brandeis University)

  • Samantha M. Chin

    (Rosenstiel Basic Medical Science Research Center, Brandeis University)

  • Casey A. Ydenberg

    (Rosenstiel Basic Medical Science Research Center, Brandeis University)

  • Jeff Gelles

    (Brandeis University)

  • Bruce L. Goode

    (Rosenstiel Basic Medical Science Research Center, Brandeis University)

Abstract

The mechanisms by which cells destabilize and rapidly disassemble filamentous actin networks have remained elusive; however, Coronin, Cofilin and AIP1 have been implicated in this process. Here using multi-wavelength single-molecule fluorescence imaging, we show that mammalian Cor1B, Cof1 and AIP1 work in concert through a temporally ordered pathway to induce highly efficient severing and disassembly of actin filaments. Cor1B binds to filaments first, and dramatically accelerates the subsequent binding of Cof1, leading to heavily decorated, stabilized filaments. Cof1 in turn recruits AIP1, which rapidly triggers severing and remains bound to the newly generated barbed ends. New growth at barbed ends generated by severing was blocked specifically in the presence of all three proteins. This activity enabled us to reconstitute and directly visualize single actin filaments being rapidly polymerized by formins at their barbed ends while simultanteously being stochastically severed and capped along their lengths, and disassembled from their pointed ends.

Suggested Citation

  • Silvia Jansen & Agnieszka Collins & Samantha M. Chin & Casey A. Ydenberg & Jeff Gelles & Bruce L. Goode, 2015. "Single-molecule imaging of a three-component ordered actin disassembly mechanism," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8202
    DOI: 10.1038/ncomms8202
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8202
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tommi Kotila & Hugo Wioland & Muniyandi Selvaraj & Konstantin Kogan & Lina Antenucci & Antoine Jégou & Juha T. Huiskonen & Guillaume Romet-Lemonne & Pekka Lappalainen, 2022. "Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Qianqian Ma & Wahyu Surya & Danxia He & Hanmeng Yang & Xiao Han & Mui Hoon Nai & Chwee Teck Lim & Jaume Torres & Yansong Miao, 2024. "Spa2 remodels ADP-actin via molecular condensation under glucose starvation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.