IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8110.html
   My bibliography  Save this article

Crystallization seeds favour crystallization only during initial growth

Author

Listed:
  • E. Allahyarov

    (Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University
    Joint Institute for High Temperatures of the Russian Academy of Sciences)

  • K. Sandomirski

    (Condensed Matter Physics Laboratory, Heinrich Heine University)

  • S.U. Egelhaaf

    (Condensed Matter Physics Laboratory, Heinrich Heine University)

  • H. Löwen

    (Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University)

Abstract

Crystallization represents the prime example of a disorder–order transition. In realistic situations, however, container walls and impurities are frequently present and hence crystallization is heterogeneously seeded. Rarely the seeds are perfectly compatible with the thermodynamically favoured crystal structure and thus induce elastic distortions, which impede further crystal growth. Here we use a colloidal model system, which not only allows us to quantitatively control the induced distortions but also to visualize and follow heterogeneous crystallization with single-particle resolution. We determine the sequence of intermediate structures by confocal microscopy and computer simulations, and develop a theoretical model that describes our findings. The crystallite first grows on the seed but then, on reaching a critical size, detaches from the seed. The detached and relaxed crystallite continues to grow, except close to the seed, which now prevents crystallization. Hence, crystallization seeds facilitate crystallization only during initial growth and then act as impurities.

Suggested Citation

  • E. Allahyarov & K. Sandomirski & S.U. Egelhaaf & H. Löwen, 2015. "Crystallization seeds favour crystallization only during initial growth," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8110
    DOI: 10.1038/ncomms8110
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8110
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Hensley & Thomas E. Videbæk & Hunter Seyforth & William M. Jacobs & W. Benjamin Rogers, 2023. "Macroscopic photonic single crystals via seeded growth of DNA-coated colloids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.