IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7992.html
   My bibliography  Save this article

Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering

Author

Listed:
  • Jae-Yeol Kim

    (Pohang University of Science and Technology)

  • Cheolhee Kim

    (Pohang University of Science and Technology)

  • Nam Ki Lee

    (Pohang University of Science and Technology
    School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology)

Abstract

Single-molecule fluorescence resonance energy transfer (smFRET) is one of the powerful techniques for deciphering the dynamics of unsynchronized biomolecules. However, smFRET is limited in its temporal resolution for observing dynamics. Here, we report a novel method for observing real-time dynamics with submillisecond resolution by tethering molecules to freely diffusing 100-nm-sized liposomes. The observation time for a diffusing molecule is extended to 100 ms with a submillisecond resolution, which allows for direct analysis of the transition states from the FRET time trace using hidden Markov modelling. We measure transition rates of up to 1,500 s–1 between two conformers of a Holliday junction. The rapid diffusional migration of Deinococcus radiodurans single-stranded DNA-binding protein (SSB) on single-stranded DNA is resolved by FRET, faster than that of Escherichia coli SSB by an order of magnitude. Our approach is a powerful method for studying the dynamics and movements of biomolecules at submillisecond resolution.

Suggested Citation

  • Jae-Yeol Kim & Cheolhee Kim & Nam Ki Lee, 2015. "Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7992
    DOI: 10.1038/ncomms7992
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7992
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonino Ingargiola & Eitan Lerner & SangYoon Chung & Francesco Panzeri & Angelo Gulinatti & Ivan Rech & Massimo Ghioni & Shimon Weiss & Xavier Michalet, 2017. "Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-27, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.