IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7949.html
   My bibliography  Save this article

Subcontinuum mass transport of condensed hydrocarbons in nanoporous media

Author

Listed:
  • Kerstin Falk

    (Massachusetts Institute of Technology)

  • Benoit Coasne

    (Massachusetts Institute of Technology)

  • Roland Pellenq

    (Massachusetts Institute of Technology)

  • Franz-Josef Ulm

    (Massachusetts Institute of Technology)

  • Lydéric Bocquet

    (Massachusetts Institute of Technology
    Present address: LPS, UMR CNRS 8550, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France)

Abstract

Although hydrocarbon production from unconventional reservoirs, the so-called shale gas, has exploded recently, reliable predictions of resource availability and extraction are missing because conventional tools fail to account for their ultra-low permeability and complexity. Here, we use molecular simulation and statistical mechanics to show that continuum description—Darcy’s law—fails to predict transport in shales nanoporous matrix (kerogen). The non-Darcy behaviour arises from strong adsorption in kerogen and the breakdown of hydrodynamics at the nanoscale, which contradict the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length. We rationalize this non-hydrodynamic behaviour using a molecular description capturing the scaling of permeance with alkane length and density. These results, which stress the need for a change of paradigm from classical descriptions to nanofluidic transport, have implications for shale gas but more generally for transport in nanoporous media.

Suggested Citation

  • Kerstin Falk & Benoit Coasne & Roland Pellenq & Franz-Josef Ulm & Lydéric Bocquet, 2015. "Subcontinuum mass transport of condensed hydrocarbons in nanoporous media," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7949
    DOI: 10.1038/ncomms7949
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7949
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyu Meng & Chuntong Zhu & Xin Wang & Zehua Liu & Mengmeng Zhu & Kuibo Yin & Ran Long & Liuning Gu & Xinxing Shao & Litao Sun & Yueming Sun & Yunqian Dai & Yujie Xiong, 2023. "Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Wang, Tianyu & Tian, Shouceng & Li, Gensheng & Zhang, Liyuan & Sheng, Mao & Ren, Wenxi, 2021. "Molecular simulation of gas adsorption in shale nanopores: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Xiaodong Li & Ketong Chen & Peng Li & Junqian Li & Haiyan Geng & Bin Li & Xiwei Li & Haiyan Wang & Liyuan Zang & Yongbo Wei & Rixin Zhao, 2021. "A New Evaluation Method of Shale Oil Sweet Spots in Chinese Lacustrine Basin and Its Application," Energies, MDPI, vol. 14(17), pages 1-15, September.
    4. Sun, Hai & Li, Tianhao & Li, Zheng & Fan, Dongyan & Zhang, Lei & Yang, Yongfei & Zhang, Kai & Zhong, Junjie & Yao, Jun, 2023. "Shale oil redistribution-induced flow regime transition in nanopores," Energy, Elsevier, vol. 282(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.