Author
Listed:
- Xisen Hou
(Northwestern University)
- Chenfeng Ke
(Northwestern University)
- Carson J. Bruns
(Northwestern University)
- Paul R. McGonigal
(Northwestern University)
- Roger B. Pettman
(Cycladex, c/o Innovation and New Ventures Office, Northwestern University, 1800 Sherman Avenue, Suite 504)
- J. Fraser Stoddart
(Northwestern University)
Abstract
Tunable solid-state fluorescent materials are ideal for applications in security printing technologies. A document possesses a high level of security if its encrypted information can be authenticated without being decoded, while also being resistant to counterfeiting. Herein, we describe a heterorotaxane with tunable solid-state fluorescent emissions enabled through reversible manipulation of its aggregation by supramolecular encapsulation. The dynamic nature of this fluorescent material is based on a complex set of equilibria, whose fluorescence output depends non-linearly on the chemical inputs and the composition of the paper. By applying this system in fluorescent security inks, the information encoded in polychromic images can be protected in such a way that it is close to impossible to reverse engineer, as well as being easy to verify. This system constitutes a unique application of responsive complex equilibria in the form of a cryptographic algorithm that protects valuable information printed using tunable solid-state fluorescent materials.
Suggested Citation
Xisen Hou & Chenfeng Ke & Carson J. Bruns & Paul R. McGonigal & Roger B. Pettman & J. Fraser Stoddart, 2015.
"Tunable solid-state fluorescent materials for supramolecular encryption,"
Nature Communications, Nature, vol. 6(1), pages 1-9, November.
Handle:
RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7884
DOI: 10.1038/ncomms7884
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7884. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.