Author
Listed:
- T. Dau
(Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), University Hospital, Ludwig Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL))
- R. S. J. Sarker
(Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), University Hospital, Ludwig Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL))
- A. O. Yildirim
(Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), University Hospital, Ludwig Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL))
- O. Eickelberg
(Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), University Hospital, Ludwig Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL))
- D. E. Jenne
(Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), University Hospital, Ludwig Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL)
Max Planck Institute of Neurobiology)
Abstract
An imbalance between neutrophil-derived proteases and extracellular inhibitors is widely regarded as an important pathogenic mechanism for lung injury. Despite intense efforts over the last three decades, attempts to develop small-molecule inhibitors for neutrophil elastase have failed in the clinic. Here we discover an intrinsic self-cleaving property of mouse neutrophil elastase that interferes with the action of elastase inhibitors. We show that conversion of the single-chain (sc) into a two-chain (tc) neutrophil elastase by self-cleavage near its S1 pocket altered substrate activity and impaired both inhibition by endogenous α-1-antitrypsin and synthetic small molecules. Our data indicate that autoconversion of neutrophil elastase decreases the inhibitory efficacy of natural α-1-antitrypsin and small-molecule inhibitors, while retaining its pathological potential in an experimental mouse model. The so-far overlooked occurrence and properties of a naturally occurring tc-form of neutrophil elastase necessitates the redesign of small-molecule inhibitors that target the sc-form as well as the tc-form of neutrophil elastase.
Suggested Citation
T. Dau & R. S. J. Sarker & A. O. Yildirim & O. Eickelberg & D. E. Jenne, 2015.
"Autoprocessing of neutrophil elastase near its active site reduces the efficiency of natural and synthetic elastase inhibitors,"
Nature Communications, Nature, vol. 6(1), pages 1-8, November.
Handle:
RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7722
DOI: 10.1038/ncomms7722
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7722. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.