IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7527.html
   My bibliography  Save this article

Onset of sediment transport is a continuous transition driven by fluid shear and granular creep

Author

Listed:
  • Morgane Houssais

    (University of Pennsylvania)

  • Carlos P. Ortiz

    (University of Pennsylvania
    University of Pennsylvania)

  • Douglas J. Durian

    (University of Pennsylvania)

  • Douglas J. Jerolmack

    (University of Pennsylvania)

Abstract

Fluid-sheared granular transport sculpts landscapes and undermines infrastructure, yet predicting the onset of sediment transport remains notoriously unreliable. For almost a century, this onset has been treated as a discontinuous transition at which hydrodynamic forces overcome gravity-loaded grain–grain friction. Using a custom laminar-shear flume to image slow granular dynamics deep into the bed, here we find that the onset is instead a continuous transition from creeping to granular flow. This transition occurs inside the dense granular bed at a critical viscous number, similar to granular flows and colloidal suspensions and inconsistent with hydrodynamic frameworks. We propose a new phase diagram for sediment transport, where ‘bed load’ is a dense granular flow bounded by creep below and suspension above. Creep is characteristic of disordered solids and reminiscent of soil diffusion on hillslopes. Results provide new predictions for the onset and dynamics of sediment transport that challenge existing models.

Suggested Citation

  • Morgane Houssais & Carlos P. Ortiz & Douglas J. Durian & Douglas J. Jerolmack, 2015. "Onset of sediment transport is a continuous transition driven by fluid shear and granular creep," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7527
    DOI: 10.1038/ncomms7527
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7527
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel R. Wilson-Whitford & Jinghui Gao & Maria Chiara Roffin & William E. Buckley & James F. Gilchrist, 2023. "Microrollers flow uphill as granular media," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.