IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7512.html
   My bibliography  Save this article

Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production

Author

Listed:
  • Hao Bin Wu

    (School of Chemical and Biomedical Engineering, Nanyang Technological University)

  • Bao Yu Xia

    (School of Chemical and Biomedical Engineering, Nanyang Technological University)

  • Le Yu

    (School of Chemical and Biomedical Engineering, Nanyang Technological University)

  • Xin-Yao Yu

    (School of Chemical and Biomedical Engineering, Nanyang Technological University)

  • Xiong Wen (David) Lou

    (School of Chemical and Biomedical Engineering, Nanyang Technological University)

Abstract

Electrochemical water splitting has been considered as a promising approach to produce clean and sustainable hydrogen fuel. However, the lack of high-performance and low-cost electrocatalysts for hydrogen evolution reaction hinders the large-scale application. As a new class of porous materials with tunable structure and composition, metal-organic frameworks have been considered as promising candidates to synthesize various functional materials. Here we demonstrate a metal-organic frameworks-assisted strategy for synthesizing nanostructured transition metal carbides based on the confined carburization in metal-organic frameworks matrix. Starting from a compound consisting of copper-based metal-organic frameworks host and molybdenum-based polyoxometalates guest, mesoporous molybdenum carbide nano-octahedrons composed of ultrafine nanocrystallites are successfully prepared as a proof of concept, which exhibit remarkable electrocatalytic performance for hydrogen production from both acidic and basic solutions. The present study provides some guidelines for the design and synthesis of nanostructured electrocatalysts.

Suggested Citation

  • Hao Bin Wu & Bao Yu Xia & Le Yu & Xin-Yao Yu & Xiong Wen (David) Lou, 2015. "Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7512
    DOI: 10.1038/ncomms7512
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7512
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ruijie & Zhang, Zhiqiang & Wu, Jun & Chen, Xueru & Wang, Lei & Yin, Haotian & Li, Hongping & Ding, Jing & Wan, Hui & Guan, Guofeng, 2022. "“Carbon diffusion” engineered carbon nitride nanosheets for high-efficiency photocatalytic solar-to-fuels conversion," Renewable Energy, Elsevier, vol. 197(C), pages 943-952.
    2. Xie, Tian & Lv, Zunhang & Wang, Kaihang & Xie, Guangwen & He, Yan, 2020. "FeMnO3 nanoparticles promoted electrocatalysts Ni–Fe–P–FeMnO3/NF with superior hydrogen evolution performances," Renewable Energy, Elsevier, vol. 161(C), pages 956-962.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.