IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7383.html
   My bibliography  Save this article

Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

Author

Listed:
  • Matteo Lostaglio

    (Imperial College London)

  • David Jennings

    (Imperial College London)

  • Terry Rudolph

    (Imperial College London)

Abstract

Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

Suggested Citation

  • Matteo Lostaglio & David Jennings & Terry Rudolph, 2015. "Description of quantum coherence in thermodynamic processes requires constraints beyond free energy," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7383
    DOI: 10.1038/ncomms7383
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7383
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uttam Singh & Arun Kumar Pati & Manabendra Nath Bera, 2016. "Uncertainty Relations for Quantum Coherence," Mathematics, MDPI, vol. 4(3), pages 1-12, July.
    2. Berrada, K. & Raffah, Bahaaudin & Eleuch, H., 2021. "Long-time protection of correlations and coherence in squeezed thermal bath," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.