IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7232.html
   My bibliography  Save this article

Multimode optomechanical dynamics in a cavity with avoided crossings

Author

Listed:
  • D. Lee

    (Yale University)

  • M. Underwood

    (Yale University)

  • D. Mason

    (Yale University)

  • A.B. Shkarin

    (Yale University)

  • S.W. Hoch

    (Yale University)

  • J.G.E. Harris

    (Yale University
    Yale University)

Abstract

Cavity optomechanics offers powerful methods for controlling optical fields and mechanical motion. A number of proposals have predicted that this control can be extended considerably in devices where multiple cavity modes couple to each other via the motion of a single mechanical oscillator. Here we study the dynamic properties of such a multimode optomechanical device, in which the coupling between cavity modes results from mechanically induced avoided crossings in the cavity’s spectrum. Near the avoided crossings we find that the optical spring shows distinct features that arise from the interaction between cavity modes. Precisely at an avoided crossing, we show that the particular form of the optical spring provides a classical analogue of a quantum non-demolition measurement of the intracavity photon number. The mechanical oscillator’s Brownian motion, an important source of noise in these measurements, is minimized by operating the device at cryogenic temperature (500 mK).

Suggested Citation

  • D. Lee & M. Underwood & D. Mason & A.B. Shkarin & S.W. Hoch & J.G.E. Harris, 2015. "Multimode optomechanical dynamics in a cavity with avoided crossings," Nature Communications, Nature, vol. 6(1), pages 1-7, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7232
    DOI: 10.1038/ncomms7232
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7232
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roel Burgwal & Ewold Verhagen, 2023. "Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.