IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7213.html
   My bibliography  Save this article

Weak linkage between the heaviest rainfall and tallest storms

Author

Listed:
  • Atsushi Hamada

    (Atmosphere and Ocean Research Institute, The University of Tokyo)

  • Yukari N. Takayabu

    (Atmosphere and Ocean Research Institute, The University of Tokyo)

  • Chuntao Liu

    (Texas A&M University-Corpus Christi)

  • Edward J. Zipser

    (University of Utah)

Abstract

Conventionally, the heaviest rainfall has been linked to the tallest, most intense convective storms. However, the global picture of the linkage between extreme rainfall and convection remains unclear. Here we analyse an 11-year record of spaceborne precipitation radar observations and establish that a relatively small fraction of extreme convective events produces extreme rainfall rates in any region of the tropics and subtropics. Robust differences between extreme rainfall and convective events are found in the rainfall characteristics and environmental conditions, irrespective of region; most extreme rainfall events are characterized by less intense convection with intense radar echoes not extending to extremely high altitudes. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Our results demonstrate that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection.

Suggested Citation

  • Atsushi Hamada & Yukari N. Takayabu & Chuntao Liu & Edward J. Zipser, 2015. "Weak linkage between the heaviest rainfall and tallest storms," Nature Communications, Nature, vol. 6(1), pages 1-6, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7213
    DOI: 10.1038/ncomms7213
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7213
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hang Gao & Chun Shen & Xuesong Wang & Pak-Wai Chan & Kai-Kwong Hon & Jianbing Li, 2024. "Interpretable semi-supervised clustering enables universal detection and intensity assessment of diverse aviation hazardous winds," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.