IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7160.html
   My bibliography  Save this article

Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy

Author

Listed:
  • Guangyuan Lu

    (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences)

  • Tianru Wu

    (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences)

  • Qinghong Yuan

    (East China Normal University)

  • Huishan Wang

    (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    School of Physics and Electronics, Central South University)

  • Haomin Wang

    (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences)

  • Feng Ding

    (Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon)

  • Xiaoming Xie

    (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    School of Physical Science and Technology, Shanghai Tech University)

  • Mianheng Jiang

    (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    School of Physical Science and Technology, Shanghai Tech University)

Abstract

Hexagonal boron nitride (h-BN) has attracted significant attention because of its superior properties as well as its potential as an ideal dielectric layer for graphene-based devices. The h-BN films obtained via chemical vapour deposition in earlier reports are always polycrystalline with small grains because of high nucleation density on substrates. Here we report the successful synthesis of large single-crystal h-BN grains on rational designed Cu–Ni alloy foils. It is found that the nucleation density can be greatly reduced to 60 per mm2 by optimizing Ni ratio in substrates. The strategy enables the growth of single-crystal h-BN grains up to 7,500 μm2, approximately two orders larger than that in previous reports. This work not only provides valuable information for understanding h-BN nucleation and growth mechanisms, but also gives an effective alternative to exfoliated h-BN as a high-quality dielectric layer for large-scale nanoelectronic applications.

Suggested Citation

  • Guangyuan Lu & Tianru Wu & Qinghong Yuan & Huishan Wang & Haomin Wang & Feng Ding & Xiaoming Xie & Mianheng Jiang, 2015. "Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy," Nature Communications, Nature, vol. 6(1), pages 1-7, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7160
    DOI: 10.1038/ncomms7160
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7160
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiqiang Lu & Peng Shen & Hongye Zhang & Guozhen Liu & Bin Guo & Yehang Cai & Han Chen & Feiya Xu & Tongchang Zheng & Fuchun Xu & Xiaohong Chen & Duanjun Cai & Junyong Kang, 2022. "Towards n-type conductivity in hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jingxian Zhong & Dawei Zhou & Qi Bai & Chao Liu & Xinlian Fan & Hehe Zhang & Congzhou Li & Ran Jiang & Peiyi Zhao & Jiaxiao Yuan & Xiaojiao Li & Guixiang Zhan & Hongyu Yang & Jing Liu & Xuefen Song & , 2024. "Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Han, Ning & Wang, Shuo & Rana, Ashvinder K. & Asif, Saira & Klemeš, Jiří Jaromír & Bokhari, Awais & Long, Jinlin & Thakur, Vijay Kumar & Zhao, Xiaolin, 2022. "Rational design of boron nitride with different dimensionalities for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.