IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7027.html
   My bibliography  Save this article

A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte

Author

Listed:
  • A. Chaigne

    (CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Equipe labellisée Ligue contre le Cancer)

  • C. Campillo

    (Université Evry Val d’Essonne, LAMBE, Boulevard F Mitterrand)

  • N. S. Gov

    (Weizmann Institute of Science)

  • R. Voituriez

    (UMR7600-CNRS/UPMC, 4 Place Jussieu)

  • C. Sykes

    (CNRS-UMR168
    UPMC, 4 Place Jussieu
    Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie)

  • M. H. Verlhac

    (CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Equipe labellisée Ligue contre le Cancer)

  • M. E. Terret

    (CIRB, Collège de France, and CNRS-UMR7241 and INSERM-U1050, Equipe labellisée Ligue contre le Cancer)

Abstract

Cell mechanics control the outcome of cell division. In mitosis, external forces applied on a stiff cortex direct spindle orientation and morphogenesis. During oocyte meiosis on the contrary, spindle positioning depends on cortex softening. How changes in cortical organization induce cortex softening has not yet been addressed. Furthermore, the range of tension that allows spindle migration remains unknown. Here, using artificial manipulation of mouse oocyte cortex as well as theoretical modelling, we show that cortical tension has to be tightly regulated to allow off-center spindle positioning: a too low or too high cortical tension both lead to unsuccessful spindle migration. We demonstrate that the decrease in cortical tension required for spindle positioning is fine-tuned by a branched F-actin network that triggers the delocalization of myosin-II from the cortex, which sheds new light on the interplay between actin network architecture and cortex tension.

Suggested Citation

  • A. Chaigne & C. Campillo & N. S. Gov & R. Voituriez & C. Sykes & M. H. Verlhac & M. E. Terret, 2015. "A narrow window of cortical tension guides asymmetric spindle positioning in the mouse oocyte," Nature Communications, Nature, vol. 6(1), pages 1-10, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7027
    DOI: 10.1038/ncomms7027
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7027
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camelia G. Muresan & Zachary Gao Sun & Vikrant Yadav & A. Pasha Tabatabai & Laura Lanier & June Hyung Kim & Taeyoon Kim & Michael P. Murrell, 2022. "F-actin architecture determines constraints on myosin thick filament motion," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Rayane Dibsy & Erwan Bremaud & Johnson Mak & Cyril Favard & Delphine Muriaux, 2023. "HIV-1 diverts cortical actin for particle assembly and release," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Özge Özgüç & Ludmilla de Plater & Varun Kapoor & Anna Francesca Tortorelli & Andrew G Clark & Jean-Léon Maître, 2022. "Cortical softening elicits zygotic contractility during mouse preimplantation development," PLOS Biology, Public Library of Science, vol. 20(3), pages 1-23, March.
    4. Robin M. Skory & Adam A. Moverley & Goli Ardestani & Yanina Alvarez & Ana Domingo-Muelas & Oz Pomp & Blake Hernandez & Piotr Tetlak & Stephanie Bissiere & Claudio D. Stern & Denny Sakkas & Nicolas Pla, 2023. "The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.