IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms6934.html
   My bibliography  Save this article

A very long-term transient event preceding the 2011 Tohoku earthquake

Author

Listed:
  • Yusuke Yokota

    (Earthquake Research Institute, University of Tokyo
    Present address: Hydrographic and Oceanographic Department, Japan Coast Guard, Tokyo 135-0064, Japan)

  • Kazuki Koketsu

    (Earthquake Research Institute, University of Tokyo)

Abstract

Geodetic transients have been observed in various subduction zones. The 2011 Tohoku earthquake occurred in one of the most active subduction zones globally, the Japan Trench subduction zone (JTSZ). However, no geodetic transient (except afterslip and so on) had been reported in the JTSZ before the Tohoku earthquake. Here we show that a large transient event, with duration longer than any reported previously, occurred in the JTSZ preceding the Tohoku earthquake. We calculate tectonic deformations at Global Positioning System stations along the JTSZ by removing the effects of nearby Mw 6–8 earthquakes. We identify temporal changes in these deformations, deriving 9-year deviation records from regular deformations due to slip deficit at the plate boundary. We perform an inversion of the deviations to obtain the source model of their root event. The relationship between the obtained transient event and Tohoku earthquake is shown through Coulomb stress change and seismic supercycle simulation.

Suggested Citation

  • Yusuke Yokota & Kazuki Koketsu, 2015. "A very long-term transient event preceding the 2011 Tohoku earthquake," Nature Communications, Nature, vol. 6(1), pages 1-5, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms6934
    DOI: 10.1038/ncomms6934
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6934
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blandine Gardonio & David Marsan & Thomas Bodin & Anne Socquet & Stéphanie Durand & Mathilde Radiguet & Yanick Ricard & Alexandre Schubnel, 2024. "Change of deep subduction seismicity after a large megathrust earthquake," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms6934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.