IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms6929.html
   My bibliography  Save this article

Multi-body coalescence in Pickering emulsions

Author

Listed:
  • Tong Wu

    (University of Notre Dame)

  • Haitao Wang

    (University of Notre Dame)

  • Benxin Jing

    (University of Notre Dame)

  • Fang Liu

    (University of Notre Dame)

  • Peter C. Burns

    (University of Notre Dame
    University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, USA)

  • Chongzheng Na

    (University of Notre Dame)

Abstract

Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions—the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications.

Suggested Citation

  • Tong Wu & Haitao Wang & Benxin Jing & Fang Liu & Peter C. Burns & Chongzheng Na, 2015. "Multi-body coalescence in Pickering emulsions," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms6929
    DOI: 10.1038/ncomms6929
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6929
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingrui Zhang & Ziwei Ye & Chunchun Li & Qinglu Chen & Wafaa Aljuhani & Yiming Huang & Xin Xu & Chunfei Wu & Steven E. J. Bell & Yikai Xu, 2023. "General approach to surface-accessible plasmonic Pickering emulsions for SERS sensing and interfacial catalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms6929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.