Author
Listed:
- Xi Zhang
(University of California Santa Cruz)
- Robert A. West
(Jet Propulsion Laboratory, California Institute of Technology)
- Patrick G. J. Irwin
(Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory)
- Conor A. Nixon
(NASA Goddard Space Flight Center)
- Yuk L. Yung
(California Institute of Technology)
Abstract
Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5–10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.
Suggested Citation
Xi Zhang & Robert A. West & Patrick G. J. Irwin & Conor A. Nixon & Yuk L. Yung, 2015.
"Aerosol influence on energy balance of the middle atmosphere of Jupiter,"
Nature Communications, Nature, vol. 6(1), pages 1-9, December.
Handle:
RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10231
DOI: 10.1038/ncomms10231
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10231. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.