Author
Listed:
- Cameron Myhrvold
(Harvard Medical School
Wyss Institute for Biologically Inspired Engineering, Harvard University)
- Jonathan W. Kotula
(Harvard Medical School
Wyss Institute for Biologically Inspired Engineering, Harvard University)
- Wade M. Hicks
(Harvard Medical School
Wyss Institute for Biologically Inspired Engineering, Harvard University)
- Nicholas J. Conway
(Wyss Institute for Biologically Inspired Engineering, Harvard University)
- Pamela A. Silver
(Harvard Medical School
Wyss Institute for Biologically Inspired Engineering, Harvard University)
Abstract
Microbial population growth is typically measured when cells can be directly observed, or when death is rare. However, neither of these conditions hold for the mammalian gut microbiota, and, therefore, standard approaches cannot accurately measure the growth dynamics of this community. Here we introduce a new method (distributed cell division counting, DCDC) that uses the accurate segregation at cell division of genetically encoded fluorescent particles to measure microbial growth rates. Using DCDC, we can measure the growth rate of Escherichia coli for >10 consecutive generations. We demonstrate experimentally and theoretically that DCDC is robust to error across a wide range of temperatures and conditions, including in the mammalian gut. Furthermore, our experimental observations inform a mathematical model of the population dynamics of the gut microbiota. DCDC can enable the study of microbial growth during infection, gut dysbiosis, antibiotic therapy or other situations relevant to human health.
Suggested Citation
Cameron Myhrvold & Jonathan W. Kotula & Wade M. Hicks & Nicholas J. Conway & Pamela A. Silver, 2015.
"A distributed cell division counter reveals growth dynamics in the gut microbiota,"
Nature Communications, Nature, vol. 6(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10039
DOI: 10.1038/ncomms10039
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10039. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.