IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6891.html
   My bibliography  Save this article

Probing short-range protein Brownian motion in the cytoplasm of living cells

Author

Listed:
  • Carmine Di Rienzo

    (Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia
    NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR)

  • Vincenzo Piazza

    (Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia)

  • Enrico Gratton

    (Laboratory for Fluorescence Dynamics, University of California)

  • Fabio Beltram

    (Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia
    NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR)

  • Francesco Cardarelli

    (Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia)

Abstract

The translational motion of molecules in cells deviates from what is observed in dilute solutions. Theoretical models provide explanations for this effect but with predictions that drastically depend on the nanoscale organization assumed for macromolecular crowding agents. A conclusive test of the nature of the translational motion in cells is missing owing to the lack of techniques capable of probing crowding with the required temporal and spatial resolution. Here we show that fluorescence-fluctuation analysis of raster scans at variable timescales can provide this information. By using green fluorescent proteins in cells, we measure protein motion at the unprecedented timescale of 1 μs, unveiling unobstructed Brownian motion from 25 to 100 nm, and partially suppressed diffusion above 100 nm. Furthermore, experiments on model systems attribute this effect to the presence of relatively immobile structures rather than to diffusing crowding agents. We discuss the implications of these results for intracellular processes.

Suggested Citation

  • Carmine Di Rienzo & Vincenzo Piazza & Enrico Gratton & Fabio Beltram & Francesco Cardarelli, 2014. "Probing short-range protein Brownian motion in the cytoplasm of living cells," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6891
    DOI: 10.1038/ncomms6891
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6891
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xudong & Chen, Yao, 2021. "Ergodic property of Langevin systems with superstatistical, uncorrelated or correlated diffusivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    2. William Y. C. Huang & Xianrui Cheng & James E. Ferrell, 2022. "Cytoplasmic organization promotes protein diffusion in Xenopus extracts," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.