IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6556.html
   My bibliography  Save this article

Mechanistic insight into the interaction of BLM helicase with intra-strand G-quadruplex structures

Author

Listed:
  • Sujoy Chatterjee

    (New York University School of Medicine)

  • Jennifer Zagelbaum

    (New York University School of Medicine)

  • Pavel Savitsky

    (Genome Integrity group, Structural Genomics Consortium, University of Oxford)

  • Andreas Sturzenegger

    (Institute of Molecular Cancer Research, University of Zurich)

  • Diana Huttner

    (NovoNordisk Foundation Center for Protein Research, University of Copenhagen
    University of Copenhagen)

  • Pavel Janscak

    (Institute of Molecular Cancer Research, University of Zurich)

  • Ian D. Hickson

    (University of Copenhagen)

  • Opher Gileadi

    (Genome Integrity group, Structural Genomics Consortium, University of Oxford)

  • Eli Rothenberg

    (New York University School of Medicine)

Abstract

Bloom syndrome is an autosomal recessive disorder caused by mutations in the RecQ family helicase BLM that is associated with growth retardation and predisposition to cancer. BLM helicase has a high specificity for non-canonical G-quadruplex (G4) DNA structures, which are formed by G-rich DNA strands and play an important role in the maintenance of genomic integrity. Here we used single-molecule FRET to define the mechanism of interaction of BLM helicase with intra-stranded G4 structures. We show that the activity of BLM is substrate dependent, and highly regulated by a short-strand DNA (ssDNA) segment that separates the G4 motif from double-stranded DNA. We demonstrate cooperativity between the RQC and HRDC domains of BLM during binding and unfolding of the G4 structure, where the RQC domain interaction with G4 is stabilized by HRDC binding to ssDNA. We present a model that proposes a unique role for G4 structures in modulating the activity of DNA processing enzymes.

Suggested Citation

  • Sujoy Chatterjee & Jennifer Zagelbaum & Pavel Savitsky & Andreas Sturzenegger & Diana Huttner & Pavel Janscak & Ian D. Hickson & Opher Gileadi & Eli Rothenberg, 2014. "Mechanistic insight into the interaction of BLM helicase with intra-strand G-quadruplex structures," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6556
    DOI: 10.1038/ncomms6556
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6556
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoyou Xue & Sameer J. Salunkhe & Nozomi Tomimatsu & Ajinkya S. Kawale & Youngho Kwon & Sandeep Burma & Patrick Sung & Eric C. Greene, 2022. "Bloom helicase mediates formation of large single–stranded DNA loops during DNA end processing," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.