IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6544.html
   My bibliography  Save this article

Cytoplasmic dynein transports cargos via load-sharing between the heads

Author

Listed:
  • Vladislav Belyy

    (Biophysics Graduate Group, University of California at Berkeley)

  • Nathan L Hendel

    (University of California at Berkeley)

  • Alexander Chien

    (Biophysics Graduate Group, University of California at Berkeley)

  • Ahmet Yildiz

    (University of California at Berkeley
    University of California at Berkeley)

Abstract

Cytoplasmic dynein is a motor protein that walks along microtubules (MTs) and performs mechanical work to power a variety of cellular processes. It remains unclear how a dynein dimer is able to transport cargos against load without coordinating the stepping cycles of its two heads. Here by using a DNA-tethered optical trapping geometry, we find that the force-generating step of a head occurs in the MT-bound state, while the ‘primed’ unbound state is highly diffusional and only weakly biased to step towards the MT-minus end. The stall forces of the individual heads are additive, with both heads contributing equally to the maximal force production of the dimer. On the basis of these results, we propose that the heads of dynein utilize a ‘load-sharing’ mechanism, unlike kinesin and myosin. This mechanism may allow dynein to work against hindering forces larger than the maximal force produced by a single head.

Suggested Citation

  • Vladislav Belyy & Nathan L Hendel & Alexander Chien & Ahmet Yildiz, 2014. "Cytoplasmic dynein transports cargos via load-sharing between the heads," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6544
    DOI: 10.1038/ncomms6544
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6544
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John T. Canty & Andrew Hensley & Merve Aslan & Amanda Jack & Ahmet Yildiz, 2023. "TRAK adaptors regulate the recruitment and activation of dynein and kinesin in mitochondrial transport," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.