IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6475.html
   My bibliography  Save this article

Localized light-induced protein dimerization in living cells using a photocaged dimerizer

Author

Listed:
  • Edward R. Ballister

    (School of Arts and Sciences, University of Pennsylvania)

  • Chanat Aonbangkhen

    (School of Arts and Sciences, University of Pennsylvania)

  • Alyssa M. Mayo

    (School of Arts and Sciences, University of Pennsylvania)

  • Michael A. Lampson

    (School of Arts and Sciences, University of Pennsylvania)

  • David M. Chenoweth

    (School of Arts and Sciences, University of Pennsylvania)

Abstract

Regulated protein localization is critical for many cellular processes. Several techniques have been developed for experimental control over protein localization, including chemically induced and light-induced dimerization, which both provide temporal control. Light-induced dimerization offers the distinct advantage of spatial precision within subcellular length scales. A number of elegant systems have been reported that utilize natural light-sensitive proteins to induce dimerization via direct protein–protein binding interactions, but the application of these systems at cellular locations beyond the plasma membrane has been limited. Here we present a new technique to rapidly and reversibly control protein localization in living cells with subcellular spatial resolution using a cell-permeable, photoactivatable chemical inducer of dimerization. We demonstrate light-induced recruitment of a cytosolic protein to individual centromeres, kinetochores, mitochondria and centrosomes in human cells, indicating that our system is widely applicable to many cellular locations.

Suggested Citation

  • Edward R. Ballister & Chanat Aonbangkhen & Alyssa M. Mayo & Michael A. Lampson & David M. Chenoweth, 2014. "Localized light-induced protein dimerization in living cells using a photocaged dimerizer," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6475
    DOI: 10.1038/ncomms6475
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6475
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Teresa Bertran & Robert Walmsley & Thomas Cummings & Iker Valle Aramburu & Donald J. Benton & Rocio Mora Molina & Jayalini Assalaarachchi & Maria Chasampalioti & Tessa Swanton & Dhira Joshi & Stefa, 2024. "A cyclic peptide toolkit reveals mechanistic principles of peptidylarginine deiminase IV regulation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Jean M. Etersque & Iris K. Lee & Nitika Sharma & Kexiang Xu & Andrew Ruff & Justin D. Northrup & Swarbhanu Sarkar & Tommy Nguyen & Richard Lauman & George M. Burslem & Mark A. Sellmyer, 2023. "Regulation of eDHFR-tagged proteins with trimethoprim PROTACs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.