IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6459.html
   My bibliography  Save this article

Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper

Author

Listed:
  • Wenshou Wang

    (University of California)

  • Ning Xie

    (University of California)

  • Le He

    (University of California)

  • Yadong Yin

    (University of California)

Abstract

The invention of paper as writing materials has greatly contributed to the development and spread of civilization. However, its large-scale production and usage have also brought significant environment and sustainability problems to modern society. To reduce paper production and consumption, it is highly desirable to develop alternative rewritable media that can be used multiple times. Herein we report the fabrication of a rewritable paper based on colour switching of commercial redox dyes using titanium oxide-assisted photocatalytic reactions. The resulting paper does not require additional inks and can be efficiently printed using ultraviolet light and erased by heating over 20 cycles without significant loss in contrast and resolution. The legibility of prints can retain over several days. We believe this rewritable paper represents an attractive alternative to regular paper in meeting the increasing global needs for sustainability and environmental protection.

Suggested Citation

  • Wenshou Wang & Ning Xie & Le He & Yadong Yin, 2014. "Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6459
    DOI: 10.1038/ncomms6459
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6459
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Hu & Chenze Qi & Dekun Ma & Dongpeng Yang & Shaoming Huang, 2024. "Multicolor recordable and erasable photonic crystals based on on-off thermoswitchable mechanochromism toward inkless rewritable paper," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.