IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6365.html
   My bibliography  Save this article

Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance

Author

Listed:
  • Cecilio F. Caldeira

    (INRA, LEPSE)

  • Linda Jeanguenin

    (Institut des Sciences de la Vie, Université catholique de Louvain)

  • François Chaumont

    (Institut des Sciences de la Vie, Université catholique de Louvain)

  • François Tardieu

    (INRA, LEPSE)

Abstract

Circadian rhythms enable plants to anticipate daily environmental variations, resulting in growth oscillations under continuous light. Because plants daily transpire up to 200% of their water content, their water status oscillates from favourable during the night to unfavourable during the day. We show that rhythmic leaf growth under continuous light is observed in plants that experience large alternations of water status during an entrainment period, but is considerably buffered otherwise. Measurements and computer simulations show that this is due to oscillations of plant hydraulic conductance and plasma membrane aquaporin messenger RNA abundance in roots during continuous light. A simulation model suggests that circadian oscillations of root hydraulic conductance contribute to acclimation to water stress by increasing root water uptake, thereby favouring growth and photosynthesis. They have a negative effect in favourable hydraulic conditions. Climate-driven control of root hydraulic conductance therefore improves plant performances in both stressed and non-stressed conditions.

Suggested Citation

  • Cecilio F. Caldeira & Linda Jeanguenin & François Chaumont & François Tardieu, 2014. "Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6365
    DOI: 10.1038/ncomms6365
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6365
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claude Welcker & Nadir Abusamra Spencer & Olivier Turc & Italo Granato & Romain Chapuis & Delphine Madur & Katia Beauchene & Brigitte Gouesnard & Xavier Draye & Carine Palaffre & Josiane Lorgeou & Ste, 2022. "Physiological adaptive traits are a potential allele reservoir for maize genetic progress under challenging conditions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Assouline, Shmuel & Hochberg, Uri & Silber, Avner, 2021. "The impact of tree phenology on the response of irrigated avocado: The hysteretic nature of the maximum trunk daily shrinkage," Agricultural Water Management, Elsevier, vol. 256(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.