IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6352.html
   My bibliography  Save this article

A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations

Author

Listed:
  • Bryan C. Dickinson

    (Harvard University
    Present address: Department of Chemistry, The University of Chicago, 929 E. 57th St., Chicago, Illinois 60637, USA)

  • Michael S. Packer

    (Harvard University)

  • Ahmed H. Badran

    (Harvard University)

  • David R. Liu

    (Harvard University
    Howard Hughes Medical Institute, Harvard University)

Abstract

The laboratory evolution of protease enzymes has the potential to generate proteases with therapeutically relevant specificities and to assess the vulnerability of protease inhibitor drug candidates to the evolution of drug resistance. Here we describe a system for the continuous directed evolution of proteases using phage-assisted continuous evolution (PACE) that links the proteolysis of a target peptide to phage propagation through a protease-activated RNA polymerase (PA-RNAP). We use protease PACE in the presence of danoprevir or asunaprevir, two hepatitis C virus (HCV) protease inhibitor drug candidates in clinical trials, to continuously evolve HCV protease variants that exhibit up to 30-fold drug resistance in only 1 to 3 days of PACE. The predominant mutations evolved during PACE are mutations observed to arise in human patients treated with danoprevir or asunaprevir, demonstrating that protease PACE can rapidly identify the vulnerabilities of drug candidates to the evolution of clinically relevant drug resistance.

Suggested Citation

  • Bryan C. Dickinson & Michael S. Packer & Ahmed H. Badran & David R. Liu, 2014. "A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6352
    DOI: 10.1038/ncomms6352
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6352
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mary S. Morrison & Tina Wang & Aditya Raguram & Colin Hemez & David R. Liu, 2021. "Disulfide-compatible phage-assisted continuous evolution in the periplasmic space," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.