IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6344.html
   My bibliography  Save this article

Implementation of the CRISPR-Cas9 system in fission yeast

Author

Listed:
  • Jake Z. Jacobs

    (Rutgers, the State University of New Jersey)

  • Keith M. Ciccaglione

    (Rutgers, the State University of New Jersey)

  • Vincent Tournier

    (Rutgers, the State University of New Jersey)

  • Mikel Zaratiegui

    (Rutgers, the State University of New Jersey)

Abstract

Application of the CRISPR-Cas9 genome editing system in the model organism Schizosaccharomyces pombe has been hampered by the lack of constructs to express RNA of arbitrary sequence. Here we present expression constructs that use the promoter/leader RNA of K RNA (rrk1) and a ribozyme to produce the targeting guide RNA. Together with constitutive expression of Cas9, this system achieves selection-free specific mutagenesis with efficiencies approaching 100%. The rrk1 CRISPR-Cas9 method enables rapid and efficient genome manipulation and unlocks the CRISPR toolset for use in fission yeast.

Suggested Citation

  • Jake Z. Jacobs & Keith M. Ciccaglione & Vincent Tournier & Mikel Zaratiegui, 2014. "Implementation of the CRISPR-Cas9 system in fission yeast," Nature Communications, Nature, vol. 5(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6344
    DOI: 10.1038/ncomms6344
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6344
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanmugam, Sabarathinam & Ngo, Huu-Hao & Wu, Yi-Rui, 2020. "Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: A review," Renewable Energy, Elsevier, vol. 149(C), pages 1107-1119.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.