IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6327.html
   My bibliography  Save this article

Spin–orbit coupling in surface plasmon scattering by nanostructures

Author

Listed:
  • D. O’Connor

    (King’s College London, Strand
    Present address: National Physical Laboratory, Teddington TW11 0LW, UK)

  • P. Ginzburg

    (King’s College London, Strand
    National University for Information Technology, Mechanics and Optics (ITMO))

  • F. J. Rodríguez-Fortuño

    (King’s College London, Strand)

  • G. A. Wurtz

    (King’s College London, Strand)

  • A. V. Zayats

    (King’s College London, Strand)

Abstract

The spin Hall effect leads to the separation of electrons with opposite spins in different directions perpendicular to the electric current flow because of interaction between spin and orbital angular momenta. Similarly, photons with opposite spins (different handedness of circular light polarization) may take different trajectories when interacting with metasurfaces that break spatial inversion symmetry or when the inversion symmetry is broken by the radiation of a dipole near an interface. Here we demonstrate a reciprocal effect of spin–orbit coupling when the direction of propagation of a surface plasmon wave, which intrinsically has unusual transverse spin, determines a scattering direction of spin-carrying photons. This spin–orbit coupling effect is an optical analogue of the spin injection in solid-state spintronic devices (inverse spin Hall effect) and may be important for optical information processing, quantum optical technology and topological surface metrology.

Suggested Citation

  • D. O’Connor & P. Ginzburg & F. J. Rodríguez-Fortuño & G. A. Wurtz & A. V. Zayats, 2014. "Spin–orbit coupling in surface plasmon scattering by nanostructures," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6327
    DOI: 10.1038/ncomms6327
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6327
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Zhang & Zhibin Li & Zhen Che & Wang Zhang & Yusen Zhang & Ziqi Lin & Zhan Lv & Chunling Wu & Longwei Han & Jieyuan Tang & Wenguo Zhu & Yi Xiao & Huadan Zheng & Yongchun Zhong & Zhe Chen & Jianhui Y, 2024. "Dynamics of polarization-tuned mirror symmetry breaking in a rotationally symmetric system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Li, Chunyan & Konotop, Vladimir V. & Malomed, Boris A. & Kartashov, Yaroslav V., 2023. "Bound states in Bose-Einstein condensates with radially-periodic spin-orbit coupling," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.