IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6305.html
   My bibliography  Save this article

Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways

Author

Listed:
  • Yuval Elani

    (Imperial College London
    Institute of Chemical Biology , Imperial College London)

  • Robert V. Law

    (Imperial College London
    Institute of Chemical Biology , Imperial College London)

  • Oscar Ces

    (Imperial College London
    Institute of Chemical Biology , Imperial College London)

Abstract

In the discipline of bottom-up synthetic biology, vesicles define the boundaries of artificial cells and are increasingly being used as biochemical microreactors operating in physiological environments. As the field matures, there is a need to compartmentalize processes in different spatial localities within vesicles, and for these processes to interact with one another. Here we address this by designing and constructing multi-compartment vesicles within which an engineered multi-step enzymatic pathway is carried out. The individual steps are isolated in distinct compartments, and their products traverse into adjacent compartments with the aid of transmembrane protein pores, initiating subsequent steps. Thus, an engineered signalling cascade is recreated in an artificial cellular system. Importantly, by allowing different steps of a chemical pathway to be separated in space, this platform bridges the gap between table-top chemistry and chemistry that is performed within vesicles.

Suggested Citation

  • Yuval Elani & Robert V. Law & Oscar Ces, 2014. "Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways," Nature Communications, Nature, vol. 5(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6305
    DOI: 10.1038/ncomms6305
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6305
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangxiang Zhang & Chao Li & Fukai Liu & Wei Mu & Yongshuo Ren & Boyu Yang & Xiaojun Han, 2022. "High-throughput production of functional prototissues capable of producing NO for vasodilation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.