IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6270.html
   My bibliography  Save this article

Evolutionary expansion of a regulatory network by counter-silencing

Author

Listed:
  • W. Ryan Will

    (University of Washington School of Medicine)

  • Denise H. Bale

    (University of Washington
    Present address: Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, Georgia 30332, USA)

  • Philip J. Reid

    (University of Washington)

  • Stephen J. Libby

    (University of Washington School of Medicine)

  • Ferric C. Fang

    (University of Washington School of Medicine
    University of Washington School of Medicine)

Abstract

Horizontal gene transfer plays a major role in bacterial evolution. Successful acquisition of new genes requires their incorporation into existing regulatory networks. This study compares the regulation of conserved genes in the PhoPQ regulon of Salmonella enterica serovar Typhimurium with that of PhoPQ-regulated horizontally acquired genes, which are silenced by the histone-like protein H-NS. We demonstrate that PhoP upregulates conserved and horizontally acquired genes by distinct mechanisms. Conserved genes are regulated by classical PhoP-mediated activation and are invariant in promoter architecture, whereas horizontally acquired genes exhibit variable promoter architecture and are regulated by PhoP-mediated counter-silencing. Biochemical analyses show that a horizontally acquired promoter adopts different structures in the silenced and counter-silenced states, implicating the remodelling of the H-NS nucleoprotein filament and the subsequent restoration of open-complex formation as the central mechanism of counter-silencing. Our results indicate that counter-silencing is favoured in the regulatory integration of newly acquired genes because it is able to accommodate multiple promoter architectures.

Suggested Citation

  • W. Ryan Will & Denise H. Bale & Philip J. Reid & Stephen J. Libby & Ferric C. Fang, 2014. "Evolutionary expansion of a regulatory network by counter-silencing," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6270
    DOI: 10.1038/ncomms6270
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6270
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju-Sim Kim & Alexandra Born & James Karl A. Till & Lin Liu & Sashi Kant & Morkos A. Henen & Beat Vögeli & Andrés Vázquez-Torres, 2022. "Promiscuity of response regulators for thioredoxin steers bacterial virulence," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Nara Figueroa-Bossi & Rocío Fernández-Fernández & Patricia Kerboriou & Philippe Bouloc & Josep Casadesús & María Antonia Sánchez-Romero & Lionello Bossi, 2024. "Transcription-driven DNA supercoiling counteracts H-NS-mediated gene silencing in bacterial chromatin," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.