IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6156.html
   My bibliography  Save this article

Suppressing qubit dephasing using real-time Hamiltonian estimation

Author

Listed:
  • M. D. Shulman

    (Harvard University)

  • S. P. Harvey

    (Harvard University)

  • J. M. Nichol

    (Harvard University)

  • S. D. Bartlett

    (Centre for Engineered Quantum Systems, School of Physics, The University of Sydney)

  • A. C. Doherty

    (Centre for Engineered Quantum Systems, School of Physics, The University of Sydney)

  • V. Umansky

    (Braun Center for Submicron Research, Weizmann Institute of Science)

  • A. Yacoby

    (Harvard University)

Abstract

Unwanted interaction between a quantum system and its fluctuating environment leads to decoherence and is the primary obstacle to establishing a scalable quantum information processing architecture. Strategies such as environmental and materials engineering, quantum error correction and dynamical decoupling can mitigate decoherence, but generally increase experimental complexity. Here we improve coherence in a qubit using real-time Hamiltonian parameter estimation. Using a rapidly converging Bayesian approach, we precisely measure the splitting in a singlet-triplet spin qubit faster than the surrounding nuclear bath fluctuates. We continuously adjust qubit control parameters based on this information, thereby improving the inhomogenously broadened coherence time from tens of nanoseconds to >2 μs. Because the technique demonstrated here is compatible with arbitrary qubit operations, it is a natural complement to quantum error correction and can be used to improve the performance of a wide variety of qubits in both meteorological and quantum information processing applications.

Suggested Citation

  • M. D. Shulman & S. P. Harvey & J. M. Nichol & S. D. Bartlett & A. C. Doherty & V. Umansky & A. Yacoby, 2014. "Suppressing qubit dephasing using real-time Hamiltonian estimation," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6156
    DOI: 10.1038/ncomms6156
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6156
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wonjin Jang & Jehyun Kim & Jaemin Park & Gyeonghun Kim & Min-Kyun Cho & Hyeongyu Jang & Sangwoo Sim & Byoungwoo Kang & Hwanchul Jung & Vladimir Umansky & Dohun Kim, 2023. "Wigner-molecularization-enabled dynamic nuclear polarization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Antti Vepsäläinen & Roni Winik & Amir H. Karamlou & Jochen Braumüller & Agustin Di Paolo & Youngkyu Sung & Bharath Kannan & Morten Kjaergaard & David K. Kim & Alexander J. Melville & Bethany M. Niedzi, 2022. "Improving qubit coherence using closed-loop feedback," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Fabrizio Berritta & Torbjørn Rasmussen & Jan A. Krzywda & Joost Heijden & Federico Fedele & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & Evert Nieuwenburg & Jeroen Danon & Anasua Chatterj, 2024. "Real-time two-axis control of a spin qubit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Daniel Stilck França & Liubov A. Markovich & V. V. Dobrovitski & Albert H. Werner & Johannes Borregaard, 2024. "Efficient and robust estimation of many-qubit Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.