IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6020.html
   My bibliography  Save this article

Regulated spatial organization and sensitivity of cytosolic protein oxidation in Caenorhabditis elegans

Author

Listed:
  • Catalina Romero-Aristizabal

    (Harvard Medical School)

  • Debora S. Marks

    (Harvard Medical School)

  • Walter Fontana

    (Harvard Medical School)

  • Javier Apfeld

    (Harvard Medical School)

Abstract

Cells adjust their behaviour in response to redox events by regulating protein activity through the reversible formation of disulfide bridges between cysteine thiols. However, the spatial and temporal control of these modifications remains poorly understood in multicellular organisms. Here we measured the protein thiol–disulfide balance in live Caenorhabditis elegans using a genetically encoded redox sensor and found that it is specific to tissues and is patterned spatially within a tissue. Insulin signalling regulates the sensor’s oxidation at both of these levels. Unexpectedly, we found that isogenic individuals exhibit large differences in the sensor’s thiol–disulfide balance. This variation contrasts with the general view that glutathione acts as the main cellular redox buffer. Indeed, our work suggests that glutathione converts small changes in its oxidation level into large changes in its redox potential. We therefore propose that glutathione facilitates the sensitive control of the thiol–disulfide balance of target proteins in response to cellular redox events.

Suggested Citation

  • Catalina Romero-Aristizabal & Debora S. Marks & Walter Fontana & Javier Apfeld, 2014. "Regulated spatial organization and sensitivity of cytosolic protein oxidation in Caenorhabditis elegans," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6020
    DOI: 10.1038/ncomms6020
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6020
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carla Umansky & Agustín E. Morellato & Matthias Rieckher & Marco A. Scheidegger & Manuela R. Martinefski & Gabriela A. Fernández & Oleg Pak & Ksenia Kolesnikova & Hernán Reingruber & Mariela Bollini &, 2022. "Endogenous formaldehyde scavenges cellular glutathione resulting in redox disruption and cytotoxicity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.