IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5955.html
   My bibliography  Save this article

Membrane curvature sensing by the C-terminal domain of complexin

Author

Listed:
  • David Snead

    (Weill Cornell Medical College)

  • Rachel T. Wragg

    (Weill Cornell Medical College)

  • Jeremy S. Dittman

    (Weill Cornell Medical College)

  • David Eliezer

    (Weill Cornell Medical College)

Abstract

Complexin functions at presynaptic nerve terminals to inhibit spontaneous SNARE-mediated synaptic vesicle (SV) exocytosis, while enhancing stimulated neurotransmitter release. The C-terminal domain (CTD) of complexin is essential for its inhibitory function and has been implicated in localizing complexin to SVs via direct membrane interactions. Here we show that complexin’s CTD is highly sensitive to membrane curvature, which it senses via tandem motifs, a C-terminal motif containing a mix of bulky hydrophobic and positively charged residues, and an adjacent amphipathic region that can bind membranes in either a disordered or a helical conformation. Helix formation requires membrane packing defects found on highly curved membrane surfaces. Mutations that disrupt helix formation without disrupting membrane binding compromise complexin’s inhibitory function in vivo. Thus, this membrane curvature-dependent conformational transition, combined with curvature-sensitive binding by the adjacent C-terminal motif, constitute a novel mechanism for activating complexin’s inhibitory function on the surface of SVs.

Suggested Citation

  • David Snead & Rachel T. Wragg & Jeremy S. Dittman & David Eliezer, 2014. "Membrane curvature sensing by the C-terminal domain of complexin," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5955
    DOI: 10.1038/ncomms5955
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5955
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Emil Thomasen & Tórur Skaalum & Ashutosh Kumar & Sriraksha Srinivasan & Stefano Vanni & Kresten Lindorff-Larsen, 2024. "Rescaling protein-protein interactions improves Martini 3 for flexible proteins in solution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.