IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5912.html
   My bibliography  Save this article

Persistence of pressure patterns over North America and the North Pacific since AD 1500

Author

Listed:
  • Erika K. Wise

    (University of North Carolina at Chapel Hill)

  • Matthew P. Dannenberg

    (University of North Carolina at Chapel Hill)

Abstract

Changes in moisture delivery to western North America are largely controlled by interrelated, synoptic-scale atmospheric pressure patterns. Long-term records of upper-atmosphere pressure and related circulation patterns are needed to assess potential drivers of past severe droughts and evaluate how future climate changes may impact hydroclimatic systems. Here we develop a tree-ring-based climate field reconstruction of cool-season 500 hPa geopotential height on a 2° × 2° grid over North America and the North Pacific to AD 1500 and examine the frequency and persistence of preinstrumental atmospheric pressure patterns using Self-Organizing Maps. Our results show extended time periods dominated by a set of persistent upper-air pressure patterns, providing insight into the atmospheric conditions leading to periods of sustained drought and pluvial periods in the preinstrumental past. A striking shift from meridional to zonal flow occurred at the end of the Little Ice Age and was sustained for several decades.

Suggested Citation

  • Erika K. Wise & Matthew P. Dannenberg, 2014. "Persistence of pressure patterns over North America and the North Pacific since AD 1500," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5912
    DOI: 10.1038/ncomms5912
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5912
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grant L. Harley & Justin T. Maxwell & Karen E. King & Shelly A. Rayback & Edward R. Cook & Christopher Hansen & R. Stockton Maxwell & Frederick Reinig & Jan Esper & Tsun Fung Au & Ellen V. Bergan & Ka, 2024. "A 561-yr (1461-2022 CE) summer temperature reconstruction for Mid-Atlantic-Northeast USA shows connections to volcanic forcing and atmospheric circulation," Climatic Change, Springer, vol. 177(9), pages 1-23, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.