IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5670.html
   My bibliography  Save this article

Bioreactor droplets from liposome-stabilized all-aqueous emulsions

Author

Listed:
  • Daniel C. Dewey

    (Pennsylvania State University)

  • Christopher A. Strulson

    (Pennsylvania State University
    Center for RNA Molecular Biology, Pennsylvania State University)

  • David N. Cacace

    (Pennsylvania State University)

  • Philip C. Bevilacqua

    (Pennsylvania State University
    Center for RNA Molecular Biology, Pennsylvania State University)

  • Christine D. Keating

    (Pennsylvania State University)

Abstract

Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

Suggested Citation

  • Daniel C. Dewey & Christopher A. Strulson & David N. Cacace & Philip C. Bevilacqua & Christine D. Keating, 2014. "Bioreactor droplets from liposome-stabilized all-aqueous emulsions," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5670
    DOI: 10.1038/ncomms5670
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5670
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huanqing Cui & Yage Zhang & Sihan Liu & Yang Cao & Qingming Ma & Yuan Liu & Haisong Lin & Chang Li & Yang Xiao & Sammer Ul Hassan & Ho Cheung Shum, 2024. "Thermo-responsive aqueous two-phase system for two-level compartmentalization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Prabhu Dhasaiyan & Tanwistha Ghosh & Hong-Guen Lee & Yeonsang Lee & Ilha Hwang & Rahul Dev Mukhopadhyay & Kyeng Min Park & Seungwon Shin & In Seok Kang & Kimoon Kim, 2022. "Cascade reaction networks within audible sound induced transient domains in a solution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.