IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5667.html
   My bibliography  Save this article

Molecular determinants of magnesium-dependent synaptic plasticity at electrical synapses formed by connexin36

Author

Listed:
  • Nicolás Palacios-Prado

    (Albert Einstein College of Medicine
    Grass Laboratory, Marine Biological Laboratory)

  • Sandrine Chapuis

    (Albert Einstein College of Medicine)

  • Alejandro Panjkovich

    (European Molecular Biology Laboratory, Hamburg Outstation)

  • Julien Fregeac

    (Albert Einstein College of Medicine)

  • James I. Nagy

    (University of Manitoba)

  • Feliksas F. Bukauskas

    (Albert Einstein College of Medicine)

Abstract

Neuronal gap junction (GJ) channels composed of connexin36 (Cx36) play an important role in neuronal synchronization and network dynamics. Here we show that Cx36-containing electrical synapses between inhibitory neurons of the thalamic reticular nucleus are bidirectionally modulated by changes in intracellular free magnesium concentration ([Mg2+]i). Chimeragenesis demonstrates that the first extracellular loop of Cx36 contains a Mg2+-sensitive domain, and site-directed mutagenesis shows that the pore-lining residue D47 is critical in determining high Mg2+-sensitivity. Single-channel analysis of Mg2+-sensitive chimeras and mutants reveals that [Mg2+]i controls the strength of electrical coupling mostly via gating mechanisms. In addition, asymmetric transjunctional [Mg2+]i induces strong instantaneous rectification, providing a novel mechanism for electrical rectification in homotypic Cx36 GJs. We suggest that Mg2+-dependent synaptic plasticity of Cx36-containing electrical synapses could underlie neuronal circuit reconfiguration via changes in brain energy metabolism that affects neuronal levels of intracellular ATP and [Mg2+]i.

Suggested Citation

  • Nicolás Palacios-Prado & Sandrine Chapuis & Alejandro Panjkovich & Julien Fregeac & James I. Nagy & Feliksas F. Bukauskas, 2014. "Molecular determinants of magnesium-dependent synaptic plasticity at electrical synapses formed by connexin36," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5667
    DOI: 10.1038/ncomms5667
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5667
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwa-Jin Cho & Dong Kyu Chung & Hyung Ho Lee, 2024. "Mefloquine-induced conformational shift in Cx36 N-terminal helix leading to channel closure mediated by lipid bilayer," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Seu-Na Lee & Hwa-Jin Cho & Hyeongseop Jeong & Bumhan Ryu & Hyuk-Joon Lee & Minsoo Kim & Jejoong Yoo & Jae-Sung Woo & Hyung Ho Lee, 2023. "Cryo-EM structures of human Cx36/GJD2 neuronal gap junction channel," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.