Author
Listed:
- Violette Da Cunha
(Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif
CNRS UMR3525
Institut Pasteur, Bioinformatics platform)
- Mark R. Davies
(The Wellcome Trust Sanger Institute
Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland)
- Pierre-Emmanuel Douarre
(Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif
CNRS UMR3525)
- Isabelle Rosinski-Chupin
(Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif
CNRS UMR3525)
- Immaculada Margarit
(Novartis Vaccines and Diagnostics)
- Sebastien Spinali
(Centre National de Référence des Streptocoques, Hôpitaux Universitaires, Paris Centre Cochin–Hôtel Dieu-Broca)
- Tim Perkins
(Novartis Vaccines and Diagnostics)
- Pierre Lechat
(Institut Pasteur, Bioinformatics platform)
- Nicolas Dmytruk
(Centre National de Référence des Streptocoques, Hôpitaux Universitaires, Paris Centre Cochin–Hôtel Dieu-Broca)
- Elisabeth Sauvage
(Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif
CNRS UMR3525)
- Laurence Ma
(Institut Pasteur Genomic platform)
- Benedetta Romi
(Novartis Vaccines and Diagnostics)
- Magali Tichit
(Institut Pasteur Genomic platform)
- Maria-José Lopez-Sanchez
(Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif
CNRS UMR3525)
- Stéphane Descorps-Declere
(Institut Pasteur, Bioinformatics platform)
- Erika Souche
(Institut Pasteur, Bioinformatics platform)
- Carmen Buchrieser
(CNRS UMR3525
Institut Pasteur, Biologie des Bactéries Intracellulaires)
- Patrick Trieu-Cuot
(Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif
CNRS ERL3526)
- Ivan Moszer
(Institut Pasteur, Bioinformatics platform)
- Dominique Clermont
(Institut Pasteur, Collection de l'Institut Pasteur (CIP))
- Domenico Maione
(Novartis Vaccines and Diagnostics)
- Christiane Bouchier
(Institut Pasteur Genomic platform)
- David J. McMillan
(QIMR Berghofer Medical Research Institute
Inflammation and Healing Research Cluster, University of the Sunshine Coast)
- Julian Parkhill
(The Wellcome Trust Sanger Institute)
- John L. Telford
(Novartis Vaccines and Diagnostics)
- Gordan Dougan
(The Wellcome Trust Sanger Institute)
- Mark J. Walker
(Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland)
- Matthew T. G. Holden
(The Wellcome Trust Sanger Institute
Present address: School of Medicine, University of St Andrews, St Andrews KY16 9TF, Scotland, UK)
- Claire Poyart
(Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif
Centre National de Référence des Streptocoques, Hôpitaux Universitaires, Paris Centre Cochin–Hôtel Dieu-Broca
Institut Cochin, Université Sorbonne Paris Descartes
INSERM, U1016)
- Philippe Glaser
(Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif
CNRS UMR3525
Institut Pasteur, Bioinformatics platform)
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a commensal of the digestive and genitourinary tracts of humans that emerged as the leading cause of bacterial neonatal infections in Europe and North America during the 1960s. Due to the lack of epidemiological and genomic data, the reasons for this emergence are unknown. Here we show by comparative genome analysis and phylogenetic reconstruction of 229 isolates that the rise of human GBS infections corresponds to the selection and worldwide dissemination of only a few clones. The parallel expansion of the clones is preceded by the insertion of integrative and conjugative elements conferring tetracycline resistance (TcR). Thus, we propose that the use of tetracycline from 1948 onwards led in humans to the complete replacement of a diverse GBS population by only few TcR clones particularly well adapted to their host, causing the observed emergence of GBS diseases in neonates.
Suggested Citation
Violette Da Cunha & Mark R. Davies & Pierre-Emmanuel Douarre & Isabelle Rosinski-Chupin & Immaculada Margarit & Sebastien Spinali & Tim Perkins & Pierre Lechat & Nicolas Dmytruk & Elisabeth Sauvage & , 2014.
"Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline,"
Nature Communications, Nature, vol. 5(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5544
DOI: 10.1038/ncomms5544
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5544. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.