IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5209.html
   My bibliography  Save this article

Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation

Author

Listed:
  • Emily Maclary

    (University of Michigan Medical School)

  • Emily Buttigieg

    (University of Michigan Medical School)

  • Michael Hinten

    (University of Michigan Medical School)

  • Srimonta Gayen

    (University of Michigan Medical School)

  • Clair Harris

    (University of Michigan Medical School)

  • Mrinal Kumar Sarkar

    (University of Michigan Medical School)

  • Sonya Purushothaman

    (Brody School of Medicine, East Carolina University)

  • Sundeep Kalantry

    (University of Michigan Medical School)

Abstract

Imprinted X-inactivation is a paradigm of mammalian transgenerational epigenetic regulation resulting in silencing of genes on the paternally inherited X-chromosome. The preprogrammed fate of the X-chromosomes is thought to be controlled in cis by the parent-of-origin-specific expression of two opposing long non-coding RNAs, Tsix and Xist, in mice. Exclusive expression of Tsix from the maternal-X has implicated it as the instrument through which the maternal germline prevents inactivation of the maternal-X in the offspring. Here, we show that Tsix is dispensable for inhibiting Xist and X-inactivation in the early embryo and in cultured stem cells of extra-embryonic lineages. Tsix is instead required to prevent Xist expression as trophectodermal progenitor cells differentiate. Despite induction of wild-type Xist RNA and accumulation of histone H3-K27me3, many Tsix-mutant X-chromosomes fail to undergo ectopic X-inactivation. We propose a novel model of lncRNA function in imprinted X-inactivation that may also apply to other genomically imprinted loci.

Suggested Citation

  • Emily Maclary & Emily Buttigieg & Michael Hinten & Srimonta Gayen & Clair Harris & Mrinal Kumar Sarkar & Sonya Purushothaman & Sundeep Kalantry, 2014. "Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation," Nature Communications, Nature, vol. 5(1), pages 1-14, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5209
    DOI: 10.1038/ncomms5209
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5209
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milan Kumar Samanta & Srimonta Gayen & Clair Harris & Emily Maclary & Yumie Murata-Nakamura & Rebecca M. Malcore & Robert S. Porter & Patricia M. Garay & Christina N. Vallianatos & Paul B. Samollow & , 2022. "Activation of Xist by an evolutionarily conserved function of KDM5C demethylase," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Marissa Cloutier & Surinder Kumar & Emily Buttigieg & Laura Keller & Brandon Lee & Aaron Williams & Sandra Mojica-Perez & Indri Erliandri & Andre Monteiro Da Rocha & Kenneth Cadigan & Gary D. Smith & , 2022. "Preventing erosion of X-chromosome inactivation in human embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.