IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5192.html
   My bibliography  Save this article

Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery

Author

Listed:
  • C. Ratzke

    (Technische Universität München
    Present address: Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA)

  • B. Hellenkamp

    (Technische Universität München)

  • T. Hugel

    (Technische Universität München)

Abstract

In living organisms, most proteins work in complexes to form multicomponent protein machines. The function of such multicomponent machines is usually addressed by dividing them into a collection of two state systems at equilibrium. Many molecular machines, like Hsp90, work far from equilibrium by utilizing the energy of ATP hydrolysis. In these cases, important information is gained from the observation of the succession of more than two states in a row. We developed a four-colour single-molecule FRET system to observe the succession of states in the heat shock protein 90 (Hsp90) system, consisting of an Hsp90 dimer, the cochaperone p23 and nucleotides. We show that this multicomponent system is a directional ATP-dependent machinery. This reveals a previously undescribed mechanism on how cochaperones can modify Hsp90, namely by strengthening of the coupling between ATP hydrolysis and a kinetic step involved in the Hsp90 system resulting in a stronger directionality.

Suggested Citation

  • C. Ratzke & B. Hellenkamp & T. Hugel, 2014. "Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5192
    DOI: 10.1038/ncomms5192
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5192
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonie Vollmar & Julia Schimpf & Bianca Hermann & Thorsten Hugel, 2024. "Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Paul David Harris & Alessandra Narducci & Christian Gebhardt & Thorben Cordes & Shimon Weiss & Eitan Lerner, 2022. "Multi-parameter photon-by-photon hidden Markov modeling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.