IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5064.html
   My bibliography  Save this article

Roaming dynamics in radical addition–elimination reactions

Author

Listed:
  • Baptiste Joalland

    (Wayne State University)

  • Yuanyuan Shi

    (Wayne State University)

  • Alexander Kamasah

    (Wayne State University)

  • Arthur G. Suits

    (Wayne State University)

  • Alexander M. Mebel

    (Florida International University)

Abstract

Radical addition–elimination reactions are a major pathway for transformation of unsaturated hydrocarbons. In the gas phase, these reactions involve formation of a transient strongly bound intermediate. However, the detailed mechanism and dynamics for these reactions remain unclear. Here we show, for reaction of chlorine atoms with butenes, that the Cl addition–HCl elimination pathway occurs from an abstraction-like Cl-H-C geometry rather than a conventional three-centre or four-centre transition state. Furthermore, access to this geometry is attained by roaming excursions of the Cl atom from the initially formed adduct. In effect, the alkene π cloud serves to capture the Cl atom and hold it, allowing many subsequent opportunities for the energized intermediate to find a suitable approach to the abstraction geometry. These bimolecular roaming reactions are closely related to the roaming radical dynamics recently discovered to play an important role in unimolecular reactions.

Suggested Citation

  • Baptiste Joalland & Yuanyuan Shi & Alexander Kamasah & Arthur G. Suits & Alexander M. Mebel, 2014. "Roaming dynamics in radical addition–elimination reactions," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5064
    DOI: 10.1038/ncomms5064
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5064
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shun Li & Juan Tang & Yonglin Shi & Meixin Yan & Yihua Fu & Zhishan Su & Jiaqi Xu & Weichao Xue & Xueli Zheng & Yicen Ge & Ruixiang Li & Hua Chen & Haiyan Fu, 2024. "C3 Selective chalcogenation and fluorination of pyridine using classic Zincke imine intermediates," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.