IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4925.html
   My bibliography  Save this article

Modulation of dopamine release in the striatum by physiologically relevant levels of nicotine

Author

Listed:
  • Li Wang

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Shujiang Shang

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Xinjiang Kang

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Sasa Teng

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Feipeng Zhu

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Bin Liu

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Qihui Wu

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Mingli Li

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Wei Liu

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Huadong Xu

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Li Zhou

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Ruiying Jiao

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Haiqiang Dou

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Panli Zuo

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Xiaoyu Zhang

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Lianghong Zheng

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Shirong Wang

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Changhe Wang

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

  • Zhuan Zhou

    (State Key Laboratory of Biomembrane and Membrane Biotechnology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University)

Abstract

Striatal dopamine (DA) release can be independently triggered not only by action potentials (APs) in dopaminergic axons but also APs in cholinergic interneurons (ChIs). Nicotine causes addiction by modulating DA release, but with paradoxical findings. Here, we investigate how physiologically relevant levels of nicotine modulate striatal DA release. The optogenetic stimulation of ChIs elicits DA release, which is potently inhibited by nicotine with an IC50 of 28 nM in the dorsal striatum slice. This ChI-driven DA release is predominantly mediated by α6β2* nAChRs. Local electrical stimulus (Estim) activates both dopaminergic axons and ChIs. Nicotine does not affect the APDA-dependent DA release (APDA, AP of dopaminergic axon). During burst Estim, nicotine permits the facilitation of DA release by prevention of DA depletion. Our work indicates that cholinergic stimulation-induced DA release is profoundly modulated by physiologically relevant levels of nicotine and resolves the paradoxical observation of nicotine’s effects on striatal DA release.

Suggested Citation

  • Li Wang & Shujiang Shang & Xinjiang Kang & Sasa Teng & Feipeng Zhu & Bin Liu & Qihui Wu & Mingli Li & Wei Liu & Huadong Xu & Li Zhou & Ruiying Jiao & Haiqiang Dou & Panli Zuo & Xiaoyu Zhang & Lianghon, 2014. "Modulation of dopamine release in the striatum by physiologically relevant levels of nicotine," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4925
    DOI: 10.1038/ncomms4925
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4925
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John N. J. Reynolds & Riccardo Avvisati & Paul D. Dodson & Simon D. Fisher & Manfred J. Oswald & Jeffery R. Wickens & Yan-Feng Zhang, 2022. "Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.