IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4833.html
   My bibliography  Save this article

The tobacco genome sequence and its comparison with those of tomato and potato

Author

Listed:
  • Nicolas Sierro

    (Philip Morris International R&D, Philip Morris Products S.A.)

  • James N.D. Battey

    (Philip Morris International R&D, Philip Morris Products S.A.)

  • Sonia Ouadi

    (Philip Morris International R&D, Philip Morris Products S.A.)

  • Nicolas Bakaher

    (Philip Morris International R&D, Philip Morris Products S.A.)

  • Lucien Bovet

    (Philip Morris International R&D, Philip Morris Products S.A.)

  • Adrian Willig

    (Philip Morris International R&D, Philip Morris Products S.A.
    Present address: 25b Quai Charles-Page, CH-1205 Genève, Switzerland)

  • Simon Goepfert

    (Philip Morris International R&D, Philip Morris Products S.A.)

  • Manuel C. Peitsch

    (Philip Morris International R&D, Philip Morris Products S.A.)

  • Nikolai V. Ivanov

    (Philip Morris International R&D, Philip Morris Products S.A.)

Abstract

The allotetraploid plant Nicotiana tabacum (common tobacco) is a major crop species and a model organism, for which only very fragmented genomic sequences are currently available. Here we report high-quality draft genomes for three main tobacco varieties. These genomes show both the low divergence of tobacco from its ancestors and microsynteny with other Solanaceae species. We identify over 90,000 gene models and determine the ancestral origin of tobacco mosaic virus and potyvirus disease resistance in tobacco. We anticipate that the draft genomes will strengthen the use of N. tabacum as a versatile model organism for functional genomics and biotechnology applications.

Suggested Citation

  • Nicolas Sierro & James N.D. Battey & Sonia Ouadi & Nicolas Bakaher & Lucien Bovet & Adrian Willig & Simon Goepfert & Manuel C. Peitsch & Nikolai V. Ivanov, 2014. "The tobacco genome sequence and its comparison with those of tomato and potato," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4833
    DOI: 10.1038/ncomms4833
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4833
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangyuan Zhang & Fei Qiu & Junlan Zeng & Zhichao Xu & Yueli Tang & Tengfei Zhao & Yuqin Gou & Fei Su & Shiyi Wang & Xiuli Sun & Zheyong Xue & Weixing Wang & Chunxian Yang & Lingjiang Zeng & Xiaozhong , 2023. "Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the Solanaceae family," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Zhijun TONG & Bingguang XIAO & Xuejun CHEN & Dunhuang FANG & Yihan ZHANG & Changjun HUANG & Yongping LI, 2018. "Construction of a genetic linkage map of cigar tobacco (Nicotiana tabacum L.) based on SSR markers and comparative studies," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 54(3), pages 115-122.
    3. Elizabeth Thomas & Sonia Herrero & Hayde Eng & Nafisa Gomaa & Jeff Gillikin & Roslyn Noar & Aydin Beseli & Margaret E Daub, 2020. "Engineering Cercospora disease resistance via expression of Cercospora nicotianae cercosporin-resistance genes and silencing of cercosporin production in tobacco," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-19, March.
    4. David Wickell & Li-Yaung Kuo & Hsiao-Pei Yang & Amra Dhabalia Ashok & Iker Irisarri & Armin Dadras & Sophie de Vries & Jan de Vries & Yao-Moan Huang & Zheng Li & Michael S. Barker & Nolan T. Hartwick , 2021. "Underwater CAM photosynthesis elucidated by Isoetes genome," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Omar Sandoval-Ibáñez & David Rolo & Rabea Ghandour & Alexander P. Hertle & Tegan Armarego-Marriott & Arun Sampathkumar & Reimo Zoschke & Ralph Bock, 2022. "De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b6f complex in Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.