IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4819.html
   My bibliography  Save this article

Loss-of-heterozygosity facilitates passage through Haldane’s sieve for Saccharomyces cerevisiae undergoing adaptation

Author

Listed:
  • A. C. Gerstein

    (Biodiversity Research Centre, The University of British Columbia
    Present address: Department of Genetics, Cell Biology and Development, College of Biological Sciences, The University of Minnesota, Minneapolis, Minnesota 55455, USA)

  • A. Kuzmin

    (Biodiversity Research Centre, The University of British Columbia)

  • S. P. Otto

    (Biodiversity Research Centre, The University of British Columbia)

Abstract

Haldane's sieve posits that the majority of beneficial mutations that contribute to adaptation should be dominant, as these are the mutations most likely to establish and spread when rare. It has been argued, however, that if the dominance of mutations in their current and previous environments are correlated, Haldane’s sieve could be eliminated. We constructed heterozygous lines of Saccharomyces cerevisiae containing single adaptive mutations obtained during exposure to the fungicide nystatin. Here we show that no clear dominance relationship exists across environments: mutations exhibited a range of dominance levels in a rich medium, yet were exclusively recessive under nystatin stress. Surprisingly, heterozygous replicates exhibited variable-onset rapid growth when exposed to nystatin. Targeted Sanger sequencing demonstrated that loss-of-heterozygosity (LOH) accounted for these growth patterns. Our experiments demonstrate that recessive beneficial mutations can avoid Haldane’s sieve in clonal organisms through rapid LOH and thus contribute to rapid evolutionary adaptation.

Suggested Citation

  • A. C. Gerstein & A. Kuzmin & S. P. Otto, 2014. "Loss-of-heterozygosity facilitates passage through Haldane’s sieve for Saccharomyces cerevisiae undergoing adaptation," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4819
    DOI: 10.1038/ncomms4819
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4819
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carla Bautista & Isabelle Gagnon-Arsenault & Mariia Utrobina & Anna Fijarczyk & Devin P. Bendixsen & Rike Stelkens & Christian R. Landry, 2024. "Hybrid adaptation is hampered by Haldane’s sieve," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.