IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4709.html
   My bibliography  Save this article

Epistasis and natural selection shape the mutational architecture of complex traits

Author

Listed:
  • Adam G. Jones

    (Texas A&M University)

  • Reinhard Bürger

    (Institut für Mathematik, Universität Wien)

  • Stevan J. Arnold

    (Oregon State University)

Abstract

The evolutionary trajectories of complex traits are constrained by levels of genetic variation as well as genetic correlations among traits. As the ultimate source of all genetic variation is mutation, the distribution of mutations entering populations profoundly affects standing variation and genetic correlations. Here we use an individual-based simulation model to investigate how natural selection and gene interactions (that is, epistasis) shape the evolution of mutational processes affecting complex traits. We find that the presence of epistasis allows natural selection to mould the distribution of mutations, such that mutational effects align with the selection surface. Consequently, novel mutations tend to be more compatible with the current forces of selection acting on the population. These results suggest that in many cases mutational effects should be seen as an outcome of natural selection rather than as an unbiased source of genetic variation that is independent of other evolutionary processes.

Suggested Citation

  • Adam G. Jones & Reinhard Bürger & Stevan J. Arnold, 2014. "Epistasis and natural selection shape the mutational architecture of complex traits," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4709
    DOI: 10.1038/ncomms4709
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4709
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Engen, Steinar & Sæther, Bernt-Erik, 2021. "Structure of the G-matrix in relation to phenotypic contributions to fitness," Theoretical Population Biology, Elsevier, vol. 138(C), pages 43-56.
    2. González-Forero, Mauricio, 2024. "A mathematical framework for evo-devo dynamics," Theoretical Population Biology, Elsevier, vol. 155(C), pages 24-50.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.