IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4442.html
   My bibliography  Save this article

The actin homologue MreB organizes the bacterial cell membrane

Author

Listed:
  • Henrik Strahl

    (Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University)

  • Frank Bürmann

    (Max Planck Institute of Biochemistry, Chromosome Organization and Dynamics, Am Klopferspitz 18, Martinsried D-82152, Germany)

  • Leendert W. Hamoen

    (Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University
    Swammerdam Institute for Life Sciences (SILS), University of Amsterdam)

Abstract

The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate bacterial cell wall synthesis. We noticed that the MreB cytoskeleton influences fluorescent staining of the cytoplasmic membrane. Detailed analyses combining an array of mutants, using specific lipid staining techniques and spectroscopic methods, revealed that MreB filaments create specific membrane regions with increased fluidity (RIFs). Interference with these fluid lipid domains (RIFs) perturbs overall lipid homeostasis and affects membrane protein localization. The influence of MreB on membrane organization and fluidity may explain why the active movement of MreB stimulates membrane protein diffusion. These novel MreB activities add additional complexity to bacterial cell membrane organization and have implications for many membrane-associated processes.

Suggested Citation

  • Henrik Strahl & Frank Bürmann & Leendert W. Hamoen, 2014. "The actin homologue MreB organizes the bacterial cell membrane," Nature Communications, Nature, vol. 5(1), pages 1-11, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4442
    DOI: 10.1038/ncomms4442
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4442
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Declan A. Gray & Biwen Wang & Margareth Sidarta & Fabián A. Cornejo & Jurian Wijnheijmer & Rupa Rani & Pamela Gamba & Kürşad Turgay & Michaela Wenzel & Henrik Strahl & Leendert W. Hamoen, 2024. "Membrane depolarization kills dormant Bacillus subtilis cells by generating a lethal dose of ROS," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.