IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4426.html
   My bibliography  Save this article

Radial-arrayed rotary electrification for high performance triboelectric generator

Author

Listed:
  • Guang Zhu

    (Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
    School of Materials Science and Engineering, Georgia Institute of Technology)

  • Jun Chen

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Tiejun Zhang

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Qingshen Jing

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Zhong Lin Wang

    (Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
    School of Materials Science and Engineering, Georgia Institute of Technology)

Abstract

Harvesting mechanical energy is an important route in obtaining cost-effective, clean and sustainable electric energy. Here we report a two-dimensional planar-structured triboelectric generator on the basis of contact electrification. The radial arrays of micro-sized sectors on the contact surfaces enable a high output power of 1.5 W (area power density of 19 mW cm−2) at an efficiency of 24%. The triboelectric generator can effectively harness various ambient motions, including light wind, tap water flow and normal body movement. Through a power management circuit, a triboelectric-generator-based power-supplying system can provide a constant direct-current source for sustainably driving and charging commercial electronics, immediately demonstrating the feasibility of the triboelectric generator as a practical power source. Given exceptional power density, extremely low cost and unique applicability resulting from distinctive mechanism and structure, the triboelectric generator can be applied not only to self-powered electronics but also possibly to power generation at a large scale.

Suggested Citation

  • Guang Zhu & Jun Chen & Tiejun Zhang & Qingshen Jing & Zhong Lin Wang, 2014. "Radial-arrayed rotary electrification for high performance triboelectric generator," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4426
    DOI: 10.1038/ncomms4426
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4426
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Kangqi & Chen, Chenggen & Zhang, Baosen & Li, Xiang & Wang, Zhen & Cheng, Tinghai & Lin Wang, Zhong, 2022. "Robust triboelectric-electromagnetic hybrid nanogenerator with maglev-enabled automatic mode transition for exploiting breeze energy," Applied Energy, Elsevier, vol. 328(C).
    2. Fan, Kangqi & Wang, Chenyu & Chen, Chenggen & Zhang, Yan & Wang, Peihong & Wang, Fei, 2021. "A pendulum-plucked rotor for efficient exploitation of ultralow-frequency mechanical energy," Renewable Energy, Elsevier, vol. 179(C), pages 339-350.
    3. Huiyuan Wu & Chuncai Shan & Shaoke Fu & Kaixian Li & Jian Wang & Shuyan Xu & Gui Li & Qionghua Zhao & Hengyu Guo & Chenguo Hu, 2024. "Efficient energy conversion mechanism and energy storage strategy for triboelectric nanogenerators," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Ali Matin Nazar & King-James Idala Egbe & Azam Abdollahi & Mohammad Amin Hariri-Ardebili, 2021. "Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    5. Salazar, R. & Serrano, M. & Abdelkefi, A., 2020. "Fatigue in piezoelectric ceramic vibrational energy harvesting: A review," Applied Energy, Elsevier, vol. 270(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.