IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4398.html
   My bibliography  Save this article

Non-reciprocal and highly nonlinear active acoustic metamaterials

Author

Listed:
  • Bogdan-Ioan Popa

    (Duke University)

  • Steven A. Cummer

    (Duke University)

Abstract

Unidirectional devices that pass acoustic energy in only one direction have numerous applications and, consequently, have recently received significant attention. However, for most practical applications that require unidirectionality at audio and low frequencies, subwavelength implementations capable of the necessary time-reversal symmetry breaking remain elusive. Here we describe a design approach based on metamaterial techniques that provides highly subwavelength and strongly non-reciprocal devices. We demonstrate this approach by designing and experimentally characterizing a non-reciprocal active acoustic metamaterial unit cell composed of a single piezoelectric membrane augmented by a nonlinear electronic circuit, and sandwiched between Helmholtz cavities tuned to different frequencies. The design is thinner than a tenth of a wavelength, yet it has an isolation factor of >10 dB. The design method generates relatively broadband unidirectional devices and is a good candidate for numerous acoustic applications.

Suggested Citation

  • Bogdan-Ioan Popa & Steven A. Cummer, 2014. "Non-reciprocal and highly nonlinear active acoustic metamaterials," Nature Communications, Nature, vol. 5(1), pages 1-5, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4398
    DOI: 10.1038/ncomms4398
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4398
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Yang & Zhihe Zhang & Mengwei Xu & Shuxun Li & Yuanhong Zhang & Xue-Feng Zhu & Xiaoping Ouyang & Andrea Alù, 2024. "Digital non-Foster-inspired electronics for broadband impedance matching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Stanislav Sergeev & Romain Fleury & Hervé Lissek, 2023. "Ultrabroadband sound control with deep-subwavelength plasmacoustic metalayers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Yifan Zhu & Liyun Cao & Aurélien Merkel & Shi-Wang Fan & Brice Vincent & Badreddine Assouar, 2021. "Janus acoustic metascreen with nonreciprocal and reconfigurable phase modulations," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Anis Maddi & Come Olivier & Gaelle Poignand & Guillaume Penelet & Vincent Pagneux & Yves Aurégan, 2023. "Frozen sound: An ultra-low frequency and ultra-broadband non-reciprocal acoustic absorber," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Jingcheng Li & Yasmin Mohamed Yousry & Poh Chong Lim & Seeram Ramakrishna & Kui Yao, 2024. "Mechanism of airborne sound absorption through triboelectric effect for noise mitigation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.