IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4397.html
   My bibliography  Save this article

Activation pathway of Src kinase reveals intermediate states as targets for drug design

Author

Listed:
  • Diwakar Shukla

    (Stanford University
    SIMBIOS NIH Center for biomedical computation, Stanford University)

  • Yilin Meng

    (Gordon Center for Integrative Science, The University of Chicago)

  • Benoît Roux

    (Gordon Center for Integrative Science, The University of Chicago
    Argonne National Laboratory)

  • Vijay S. Pande

    (Stanford University
    SIMBIOS NIH Center for biomedical computation, Stanford University)

Abstract

Unregulated activation of Src kinases leads to aberrant signalling, uncontrolled growth and differentiation of cancerous cells. Reaching a complete mechanistic understanding of large-scale conformational transformations underlying the activation of kinases could greatly help in the development of therapeutic drugs for the treatment of these pathologies. In principle, the nature of conformational transition could be modelled in silico via atomistic molecular dynamics simulations, although this is very challenging because of the long activation timescales. Here we employ a computational paradigm that couples transition pathway techniques and Markov state model-based massively distributed simulations for mapping the conformational landscape of c-src tyrosine kinase. The computations provide the thermodynamics and kinetics of kinase activation for the first time, and help identify key structural intermediates. Furthermore, the presence of a novel allosteric site in an intermediate state of c-src that could be potentially used for drug design is predicted.

Suggested Citation

  • Diwakar Shukla & Yilin Meng & Benoît Roux & Vijay S. Pande, 2014. "Activation pathway of Src kinase reveals intermediate states as targets for drug design," Nature Communications, Nature, vol. 5(1), pages 1-11, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4397
    DOI: 10.1038/ncomms4397
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4397
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trayder Thomas & Benoît Roux, 2021. "Tyrosine kinases: complex molecular systems challenging computational methodologies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-13, October.
    2. Arango-Restrepo, A. & Rubi, J.M. & Barragán, D., 2018. "Kinetics and energetics of chemical reactions through intermediate states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 86-96.
    3. Mingyu Li & Xiaobing Lan & Xinchao Shi & Chunhao Zhu & Xun Lu & Jun Pu & Shaoyong Lu & Jian Zhang, 2024. "Delineating the stepwise millisecond allosteric activation mechanism of the class C GPCR dimer mGlu5," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Fanjun Li & Monifa A. Fahie & Kaitlyn M. Gilliam & Ryan Pham & Min Chen, 2022. "Mapping the conformational energy landscape of Abl kinase using ClyA nanopore tweezers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Anh T. P. Nguyen & Austin T. Weigle & Diwakar Shukla, 2024. "Functional regulation of aquaporin dynamics by lipid bilayer composition," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.