IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4119.html
   My bibliography  Save this article

Noise-induced quantum coherence drives photo-carrier generation dynamics at polymeric semiconductor heterojunctions

Author

Listed:
  • Eric R. Bittner

    (University of Houston
    Université de Montréal, C.P. 6128, Succursale centre-ville)

  • Carlos Silva

    (Université de Montréal, C.P. 6128, Succursale centre-ville)

Abstract

Here we report on an exciton/lattice model of the electronic dynamics of primary photo excitations in a polymeric semiconductor heterojunction that includes both polymer π-stacking, energetic disorder and phonon relaxation. Our model indicates that that in polymer/fulerene heterojunction systems, resonant tunnelling processes brought about by environmental fluctuations couple photo excitations directly to photocurrent producing charge-transfer states on

Suggested Citation

  • Eric R. Bittner & Carlos Silva, 2014. "Noise-induced quantum coherence drives photo-carrier generation dynamics at polymeric semiconductor heterojunctions," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4119
    DOI: 10.1038/ncomms4119
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4119
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong Wang & Bo Wu & Yang Li & Shen Zhou & Conghui Wu & Tianyang Dong & Ying Jiang & Zihui Hua & Yupeng Song & Wei Wen & Jianxin Tian & Yongqiang Chai & Rui Wen & Chunru Wang, 2024. "Aggregation promotes charge separation in fullerene-indacenodithiophene dyad," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Sarmah, Manash Jyoti & Goswami, Himangshu Prabal, 2023. "Learning coherences from nonequilibrium fluctuations in a quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.