IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3952.html
   My bibliography  Save this article

A general approach to crystalline and monomodal pore size mesoporous materials

Author

Listed:
  • Altug S. Poyraz

    (University of Connecticut)

  • Chung-Hao Kuo

    (University of Connecticut)

  • Sourav Biswas

    (University of Connecticut)

  • Cecil K. King’ondu

    (University of Connecticut
    Nelson Mandela African Institution of Science and Technology, PO Box 447, Arusha, Tanzania)

  • Steven L. Suib

    (University of Connecticut
    University of Connecticut)

Abstract

Mesoporous oxides attract a great deal of interest in many fields, including energy, catalysis and separation, because of their tunable structural properties such as surface area, pore volume and size, and nanocrystalline walls. Here we report thermally stable, crystalline, thermally controlled monomodal pore size mesoporous materials. Generation of such materials involves the use of inverse micelles, elimination of solvent effects, minimizing the effect of water content and controlling the condensation of inorganic frameworks by NOx decomposition. Nanosize particles are formed in inverse micelles and are randomly packed to a mesoporous structure. The mesopores are created by interconnected intraparticle voids and can be tuned from 1.2 to 25 nm by controlling the nanoparticle size. Such phenomena allow the preparation of multiple phases of the same metal oxide and syntheses of materials having compositions throughout much of the periodic table, with different structures and thermal stabilities as high as 800 °C.

Suggested Citation

  • Altug S. Poyraz & Chung-Hao Kuo & Sourav Biswas & Cecil K. King’ondu & Steven L. Suib, 2013. "A general approach to crystalline and monomodal pore size mesoporous materials," Nature Communications, Nature, vol. 4(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3952
    DOI: 10.1038/ncomms3952
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3952
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Ziwei & Liu, Lijuan & Zhu, Xu & Ren, Zaixiao & Bai, Juan, 2024. "Cobalt-based catalysts for catalytic oxidation of biomass-derived 5-Hydromethylfurfural to value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Somia M. Abbas & Ahmed M. Hashem & Ashraf E. Abdel-Ghany & Eman H. Ismail & Mário Kotlár & Martin Winter & Jie Li & Christian M. Julien, 2020. "Ag-Modified LiMn 2 O 4 Cathode for Lithium-Ion Batteries: Coating Functionalization," Energies, MDPI, vol. 13(19), pages 1-24, October.
    3. Ashraf Abdel-Ghany & Ahmed M. Hashem & Alain Mauger & Christian M. Julien, 2020. "Lithium-Rich Cobalt-Free Manganese-Based Layered Cathode Materials for Li-Ion Batteries: Suppressing the Voltage Fading," Energies, MDPI, vol. 13(13), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.