IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3857.html
   My bibliography  Save this article

Observed thinning of Totten Glacier is linked to coastal polynya variability

Author

Listed:
  • A. Khazendar

    (Jet Propulsion Laboratory, California Institute of Technology)

  • M.P. Schodlok

    (Jet Propulsion Laboratory, California Institute of Technology
    Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles)

  • I. Fenty

    (Jet Propulsion Laboratory, California Institute of Technology)

  • S.R.M. Ligtenberg

    (Institute for Marine and Atmospheric Research Utrecht, Utrecht University)

  • E. Rignot

    (Jet Propulsion Laboratory, California Institute of Technology
    University of California, Irvine)

  • M.R. van den Broeke

    (Institute for Marine and Atmospheric Research Utrecht, Utrecht University)

Abstract

Analysis of ICESat-1 data (2003–2008) shows significant surface lowering of Totten Glacier, the glacier discharging the largest volume of ice in East Antarctica, and less change on nearby Moscow University Glacier. After accounting for firn compaction anomalies, the thinning appears to coincide with fast-flowing ice indicating a dynamical origin. Here, to elucidate these observations, we apply high-resolution ice–ocean modelling. Totten Ice Shelf is simulated to have higher, more variable basal melting rates. We link this variability to the volume of cold water, originating in polynyas upon sea ice formation, reaching the sub-ice-shelf cavity. Hence, we propose that the observed increased thinning of Totten Glacier is due to enhanced basal melting caused by a decrease in cold polynya water reaching its cavity. We support this hypothesis with passive microwave data of polynya extent variability. Considering the widespread changes in sea ice conditions, this mechanism could be contributing extensively to ice-shelf instability.

Suggested Citation

  • A. Khazendar & M.P. Schodlok & I. Fenty & S.R.M. Ligtenberg & E. Rignot & M.R. van den Broeke, 2013. "Observed thinning of Totten Glacier is linked to coastal polynya variability," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3857
    DOI: 10.1038/ncomms3857
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3857
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daisuke Hirano & Takeshi Tamura & Kazuya Kusahara & Masakazu Fujii & Kaihe Yamazaki & Yoshihiro Nakayama & Kazuya Ono & Takuya Itaki & Yuichi Aoyama & Daisuke Simizu & Kohei Mizobata & Kay I. Ohshima , 2023. "On-shelf circulation of warm water toward the Totten Ice Shelf in East Antarctica," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Rongxing Li & Yuan Cheng & Tian Chang & David E. Gwyther & Martin Forbes & Lu An & Menglian Xia & Xiaohan Yuan & Gang Qiao & Xiaohua Tong & Wenkai Ye, 2023. "Satellite record reveals 1960s acceleration of Totten Ice Shelf in East Antarctica," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Federica Donda & Michele Rebesco & Vedrana Kovacevic & Alessandro Silvano & Manuel Bensi & Laura Santis & Yair Rosenthal & Fiorenza Torricella & Luca Baradello & Davide Gei & Amy Leventer & Alix Post , 2024. "Footprint of sustained poleward warm water flow within East Antarctic submarine canyons," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.