IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3777.html
   My bibliography  Save this article

Automatic protein structure solution from weak X-ray data

Author

Listed:
  • Pavol Skubák

    (Leiden University)

  • Navraj S. Pannu

    (Leiden University)

Abstract

Determining new protein structures from X-ray diffraction data at low resolution or with a weak anomalous signal is a difficult and often an impossible task. Here we propose a multivariate algorithm that simultaneously combines the structure determination steps. In tests on over 140 real data sets from the protein data bank, we show that this combined approach can automatically build models where current algorithms fail, including an anisotropically diffracting 3.88 Å RNA polymerase II data set. The method seamlessly automates the process, is ideal for non-specialists and provides a mathematical framework for successfully combining various sources of information in image processing.

Suggested Citation

  • Pavol Skubák & Navraj S. Pannu, 2013. "Automatic protein structure solution from weak X-ray data," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3777
    DOI: 10.1038/ncomms3777
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3777
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Tetreau & Michael R. Sawaya & Elke Zitter & Elena A. Andreeva & Anne-Sophie Banneville & Natalie A. Schibrowsky & Nicolas Coquelle & Aaron S. Brewster & Marie Luise Grünbein & Gabriela Nass , 2022. "De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Gergely N. Nagy & Xiao-Feng Zhao & Richard Karlsson & Karen Wang & Ramona Duman & Karl Harlos & Kamel El Omari & Armin Wagner & Henrik Clausen & Rebecca L. Miller & Roman J. Giger & E. Yvonne Jones, 2024. "Structure and function of Semaphorin-5A glycosaminoglycan interactions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Martin Hagan & Genady Pankov & Ramses Gallegos-Monterrosa & David J. Williams & Christopher Earl & Grant Buchanan & William N. Hunter & Sarah J. Coulthurst, 2023. "Rhs NADase effectors and their immunity proteins are exchangeable mediators of inter-bacterial competition in Serratia," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Prakruti R. Singh & Venkatareddy Dadireddy & Shubha Udupa & Shashwath Malli Kalladi & Somnath Shee & Sanjeev Khosla & Raju S. Rajmani & Amit Singh & Suryanarayanarao Ramakumar & Valakunja Nagaraja, 2023. "The Mycobacterium tuberculosis methyltransferase Rv2067c manipulates host epigenetic programming to promote its own survival," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Jinzhu Zhang & Minghai Tang & Yujie Chen & Dan Ke & Jie Zhou & Xinyu Xu & Wenxian Yang & Jianxiong He & Haohao Dong & Yuquan Wei & James H. Naismith & Yi Lin & Xiaofeng Zhu & Wei Cheng, 2021. "Catalytic flexibility of rice glycosyltransferase OsUGT91C1 for the production of palatable steviol glycosides," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Emma J. Banks & Mauricio Valdivia-Delgado & Jacob Biboy & Amber Wilson & Ian T. Cadby & Waldemar Vollmer & Carey Lambert & Andrew L. Lovering & R. Elizabeth Sockett, 2022. "Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.